
Legal Information
Programmer's Guide to Pen Services
For Microsoft® Windows® 95
Information in this document is subject to change without notice. Companies, names, and data used in
examples herein are fictitious unless otherwise noted. No part of this document may be reproduced or
transmitted in any form or by any means, electronic or mechanical, for any purpose, without the express
written permission of Microsoft Corporation.

Microsoft may have patents or pending patent applications, trademarks, copyrights, or other intellectual
property rights covering subject matter in this document. The furnishing of this document does not give
you any license to these patents, trademarks, copyrights, or other intellectual property rights except as
expressly provided in any written license agreement from Microsoft.

© 1995 - 1996 Microsoft Corporation. All rights reserved.

Microsoft, MS, MS-DOS, Windows, and Win32 are either registered trademarks or trademarks of
Microsoft Corporation in the United States and/or other countries.

Borland International is a registered trademark of Borland International, Inc.

Other product and company names mentioned herein may be the trademarks of their respective owners.

Introduction
This book describes how to create applications that use the Microsoft® Windows® Pen Application
Programming Interface (API). The book is divided into two parts. Part 1 presents an overview of pen-
based computing and describes the various components of the Pen API. Sample code supplements the
text and later chapters present a complete sample program and sample recognizer as examples.
(Recognizers translate pen strokes into characters, symbols, or shapes.) Part 2 provides a reference for
the functions, structures, messages, and constants that make up the Pen API. Following the reference, a
number of appendixes provide information about the differences between versions 1.0 and 2.0 of the Pen
API, the 32-bit pen services, and more.

The Microsoft Windows 95 operating system includes a subset of the Pen API for displaying pen data.
This allows a pen-based application to collect pen data from a pen tablet, store the data, and later display
the data on any personal computer running Windows 95, even without pen hardware. The full pen
services come only with pen hardware from original equipment manufacturers (OEMs) of pen equipment.
Thus, an application running with Windows 95 has guaranteed access to at least the display portion of the
Pen API; if a pen tablet is attached, the application can also accept pen input.

The full pen services of the Pen API version 2.0 described in this book can run only with Windows 95 or
later Windows versions.

This book assumes a familiarity with the C language and with Windows programming in general. To keep
discussions concise, the text does not digress to define such general terms as dynamic-link library (DLL),
callback function, or message. However, pen-based computing generates its own lexicon, so the text
defines new terms specific to the Pen API as they are introduced. In addition, a brief glossary of
terminology specific to pen-based computing appears at the end of this book.

Organization
This book is divided into the following chapters and appendixes.

Chapter or appendix Describes
Chapter 1, Overview of the Pen
Application Programming
Interface

Architecture of the Pen API.

Chapter 2, Starting Out with
System Defaults

How to add pen functionality to an
application with a minimum of
programming effort.

Chapter 3, The Writing Process How an application gets input from
a pen device.

Chapter 4, The Inking Process How an application collects and
changes pen input data.

Chapter 5, The Recognition
Process

Converting raw pen input into
usable characters such as letters
and numerals.

Chapter 6, Design Considerations Proper techniques, warnings, and
tips for writing a pen-based
application.

Chapter 7, A Sample Pen
Application

The PENAPP.C sample
application, to illustrate the
information in Chapters 1 through
6.

Chapter 8, Writing a Recognizer The requirements and design of a
recognizer. Illustrates information
using the sample recognizer
SREC.C as a model.

Chapter 9, Summary of the Pen
Application Programming
Interface

Pen API services, listed by
category.

Chapter 10, Pen Application
Programming Interface Functions

Functions, listed alphabetically.

Chapter 11, Pen Application
Programming Interface Structures

Structures, listed alphabetically.

Chapter 12, Pen Application
Programming Interface Messages

Messages, listed alphabetically.

Chapter 13, Pen Application
Programming Interface Constants

Constants, listed alphabetically.

Appendix A, Differences Between
Versions 1.0 and 2.0 of the Pen
Application Programming
Interface

Changes and improvements to the
Pen API.

Appendix B, Using the 32-Bit Pen
Application Programming
Interface

How to write 32-bit pen-based
applications.

Appendix C, Modifying the
SYSTEM.INI File

Settings used in Windows
SYSTEM.INI.

Appendix D, Accessing the Pen
Device Driver

How an application calls the pen
driver.

Glossary Pen-based terms.

Document Conventions
The following document conventions are used throughout this book.

Convention Description
Bold text Bold letters indicate a specific term

or punctuation mark intended to be
used literally: language functions
or keywords (such as
DrawPenDataEx or switch), MS-
DOS® commands, and command-
line options. You must type these
terms and punctuation marks
exactly as shown. The use of
uppercase or lowercase letters is
usually, but not always, significant.
For example, you can invoke the C
compiler by typing either CL, cl, or
Cl at the MS-DOS prompt.

() In syntax statements, parentheses
enclose one or more parameters
that you pass to a function.

Italic text Italic text indicates a placeholder;
you are expected to provide an
actual value. For example, in the
following syntax the placeholder
lpszRecogName represents a
pointer to the filename of a
recognizer:
InstallRecognizer(lpszRecogNa
me);
New terms pertaining to pen-based
computing also appear in italics
where they are first introduced or
defined in the text. Such terms are
also listed in the glossary.

Monospace text Code examples are displayed in a
nonproportional typeface.

if(!RegisterClass(LPWNDCLASS)&wc))
          .
          .
          .
else

A vertical ellipsis in a program
example indicates that a portion of
the program has been omitted.

. . . A horizontal ellipsis following an
item indicates that more items
having the same form may appear.

[[]] Double brackets enclose optional
fields or parameters in command
lines or syntax statements.

| A vertical bar indicates that you
can enter one of the entries shown
on either side of the bar. In symbol

graphs, a vertical bar indicates the
possible character choices.

{ } Braces indicate that you must
specify one of the enclosed items.

SMALL CAPITAL LETTERS Small capital letters indicate the
names of keys and key sequences;
for example, CTRL+ALT+DEL. If the key
names are separated by commas
instead of plus signs; for example
ALT, F¾then you must press the
keys consecutively rather than
together.

Books and Articles for Further Reading
The documentation listed in the following table provides additional information about the Pen API and
about Windows in general.

Title Contents
Microsoft Windows Pen API
version 2.0 online Help

Online reference for Pen API
functions, structures, messages,
and constants.

Microsoft Windows Software
Development Kit (SDK)
documentation, or equivalent
documentation

Information about the application
programming interface of the
Windows operating system.

Microsoft Windows Device Driver
Kit (DDK) documentation, or
equivalent documentation

Description of the application
programming interface of the
Windows device drivers. Required
only for developing drivers.

Duncan, Ray. "Power
Programming." PC Magazine.
New York, New York: Ziff-Davis
Publishing Company, January 14,
1992 through May 12, 1992

Series of articles on the basics of
the Pen API version 1.0.

Petzold, Charles. Programming
Windows. Third edition.
Redmond, Washington: Microsoft
Press, 1992

Good introduction to general
programming for Windows.

System Requirements
You can develop pen applications for version 2.0 of the Pen API with the following software and hardware:

· A personal computer running Windows 95 or a later version of Windows
· A mouse, tablet, or other pointing device supported by the Pen API
· Microsoft Win32® Software Development Kit (SDK)
· Microsoft Windows 95 Device Driver Kit (DDK) ¾ necessary only if you will be building pen, display, or

keyboard drivers
· Microsoft C Optimizing Compiler, version 5.1 or later, or Microsoft QuickC® for Windows version 1.0

or later
· Microsoft Macro Assembler version 5.1 or later ¾ necessary only if you will be building pen, display,

or keyboard drivers

You may also use equivalent development software produced by other manufacturers, such as Borland
International, Inc.

Acknowledgments
Special thanks to the contributors to this book including:

Writers Beck Zaratian
Don Gilbert

Mark Williams

Editors David Steinmetz
Peter Delaney

Barb Ellsworth
David Thornbrugh

Program Managers Jeff Aamodt
Eric Berman

Steve Liffick

Pen Services Development
Team

Eric Onasick
Vinayak Bhalerao
Haresh Ved

Shishir Pardikar
Chris Leyerle
Fumitaka Kawasaki

Recognition Development
Team

Mike Van Kleeck
Justin Ferrari
Sung Rhee
Donald Sidoroff
Greg Hullender

Jim Adcock
Shamik Basu
Oswaldo Ribas
Patrick Haluptzok

Testing Team Becca Moss
Brian Watson
Xian-Ling Wu

Keith Stutler
Randy Shedden
David Flenniken

Overview of the Pen Application
Programming Interface

This chapter presents an overview of pen-based computing, divided into two main sections. The first
section broadly describes the various components that make up the Pen application programming
interface (API). The second section describes how applications access the pen services to incorporate
pen-based features.

The architecture of version 2.0 of the Pen API remains similar to version 1.0, but its style and design differ
considerably. Even if you have worked with version 1.0, you should read this chapter to understand the
shift in programming philosophy in version 2.0.

Architecture of the Pen API
The seemingly simple step of getting data from the pen to an application involves many intermediate
tasks. Fortunately, the Pen API itself takes on the major share of this work. By providing applications with
convenient access to pen features, the Pen API insulates the programmer from the most tedious aspects
of pen data recognition. At the same time, its flexible design allows applications to control most of the low-
level processes of pen input.

As you read this section, keep in mind that the complexities of the Pen API architecture in no way imply a
corresponding difficulty in creating pen-based programs. You will find that writing intelligent pen-based
software is no more difficult than writing other applications for Microsoft Windows.

Figure 1.1 illustrates the interaction between applications and the main components of the Pen API.

{ewc msdncd, EWGraphic, bsd23549 0 /a "SDK_1_1.BMP"}

The following four sections describe each component of Figure 1.1, beginning with the main Windows
component. Each section contains a figure that incorporates Figure 1.1, exploding the component into a
detailed view. The accompanying text describes the component and explains how it interacts with the
other components.

Windows
As Figure 1.2 shows, the heart of the pen-based services for Microsoft Windows 95 consists of two
libraries ¾ PKPD.DLL and PENWIN.DLL. The PKPD.DLL file provides ink management for the pen
services of Windows 95. This allows an application to display and manipulate ink data with any installation
of Windows 95, even one without pen hardware. Chapter 9, "Summary of the Pen Application
Programming Interface," identifies the pen services exported by PKPD.DLL.

{ewc msdncd, EWGraphic, bsd23549 1 /a "SDK_1_2.BMP"}

The PENWIN.DLL file is available only with original equipment manufacturer (OEM) pen hardware and
provides additional pen services that collect, modify, and recognize ink data. Before using these input and
recognition features, an application should first test for the presence of the PENWIN.DLL file and either
gracefully exit or alter its behavior accordingly.

In Pen Windows version 1.0, applications were required to call RegisterPenApp in order to tell the
system to convert all edit controls to handwriting edit (hedit) controls. With Pen API version 2.0, however,
this is not necessary; all edit controls in applications are automatically converted. If the application is
version-stamped as a Windows 95 - based application, the conversion is automatic; otherwise,
applications version-stamped as Windows 3.1 - based applications require the call to RegisterPenApp
that was required for Pen Windows version 1.0.

It is important to understand that for any application to successfully use the functions in PENWIN.DLL, the
computer on which it is running must load the pen services when Windows boots and terminated the pen
services when Windows shuts down (that is, PENWIN.DLLmust be referenced from the drivers line in the
[Boot] section of the SYSTEM.INI file). This does not apply to functions in the PKPD.DLL library, which is
automatically available on all Windows 95 systems. See Appendix C, "Modifying the SYSTEM.INI File,"
for information on the SYSTEM.INI file requirements.

Because of this requirement, PENWIN.DLL should never be statically linked by any application that may
be run on a system on which pen services are not installed. Instead, its functions should always be called
using function pointers. Typically, when the pen-aware application initializes, it calls GetSystemMetrics
with SM_PENWINDOWS as a parameter which, if returned successful, provides a handle to the loaded
library. Then, for each PENWIN.DLL function used by the application, the application calls the
GetProcAddress function (with the library handle and the function name) and saves a function pointer to
be used in future calls to that function. See the HFORM sample application for an example of this
technique.

By not linking PENWIN.LIB, it is insured that an application running on a system on which PENWIN.DLL
has not been installed, but which contains PENWIN.DLL on the path, will not load PENWIN.DLL at
runtime. Pen components not loaded at system boot time are not guaranteed to perform properly. Note
that this applies for both 16-bit and 32-bit libraries.

Applications that are destined to be run only on systems that have pen services installed can link directly
to PENWIN.LIB. These applications should test for the existence of pen services at startup, however, and
exit if it is not found. Note that most of the examples in this manual follow normal linking practice for the
sake of readability and do not use the safer practice of using function pointers. It is the responsibility of
the developer to choose the best means of accessing the functions in PENWIN.DLL for each application.

The Pen Message Interpreter provides basic pen services to pen-unaware applications. Such
applications, which do not explicitly take advantage of Windows pen services, currently represent a
majority of Windows-based software. The Message Interpreter allows use of a pen with pen-unaware
programs by capturing handwritten input and other pen events and converting them into equivalent
keyboard and mouse messages. The application has no knowledge of the pen or that pen input has
occurred.

In capturing handwritten input, the Message Interpreter acts only when it detects a standard I-beam
pointer or insertion point in the pen-unaware application. Since applications generally show the system I-
beam pointer when prompting for input in writing areas, the Message Interpreter reliably serves most pen-
unaware programs. However, a few pen-unaware Windows-based applications do not prompt with a
standard I-beam pointer, defeating the Interpreter's detection method. Although the Interpreter still allows
the pen to serve as a mouse with such applications, it cannot interpret handwritten input.

The Message Interpreter may also falter when serving applications developed for a version of Windows
earlier than version 3.1. These applications were not designed with the pen in mind and therefore may not
work optimally with the pen. For example, edit fields in applications written for Windows version 3.0 are
often too small to write in with a pen. A final problem with older applications is that the Message
Interpreter has no means of receiving contextual information from the application about what sort of input
it expects. This can reduce recognition accuracy.

The Message Interpreter is of academic interest for the programmer because it pertains to only pen-
unaware applications. The rest of this book focuses on how to write pen-aware applications and dynamic-
link libraries (DLLs) that make use of the Pen API directly.

Drivers
Figure 1.3 shows the two types of drivers that function within the Pen API system. Most drivers
incorporate two modules: an installable device driver that uses the Windows installable driver interface
and a virtual device driver that handles interaction with the hardware.

{ewc msdncd, EWGraphic, bsd23549 2 /a "SDK_1_3.BMP"}

Pen Driver
The pen installable device driver, which Windows supplies as the file PENC.DRV, interacts with the virtual
pen driver (VPENDC.VXD) and passes pen movement data to Windows. The fact that the pen driver's
data may sometimes be needed for on-the-fly handwriting recognition places several constraints on a pen
input device:

· The pen driver must be able to report the location of the pen at least 60 times per second. This rate
ensures the true path of the pen is reported accurately enough to support the efforts of vector-based
recognizers. It also makes the ink, a path of pixels that traces the pen's movement, appear smooth
and natural at normal writing speeds. For more information about recognizers, see the "Recognizer"
section later in this chapter.

· The pen driver must be able to report pen positions with a resolution of at least 200 points per inch.
This degree of resolution ensures ink coordinates are sufficiently fine to let the recognizer make
accurate judgments about the path of the pen over the digitizing surface.

· Regardless of the resolution of the device, the pen driver must report the pen position in tablet
coordinates of 0.001 inch. This convention ensures that Windows, the recognizer modules, and the
application all view the ink at the same scale.

Display Driver
The display driver is responsible for interacting with the display hardware and the graphics device
interface (GDI) module of Microsoft Windows. A display driver should support inking to provide the user
with visible feedback as the pen moves. Technically, the Pen API does not require inking support from the
display driver. However, the system is far more practical and convenient when the user can see the ink
trail left by the pen.

Two types of display drivers are supported: Display Control Interface (DCI) drivers (called DCI
Providers) and non-DCI drivers, such as older VGA or 8514 drivers. For DCI Providers, no extra work is
required to support the pen interface.

To support inking in a non-DCI driver, the display driver must be able to:

· Export the GetLPDevice function to provide Windows with a value identifying the pen hardware.
· Export the InkReady function, which Windows calls to notify the driver that the pen is in motion and

Windows is ready to display ink. InkReady must be able to handle calls during system interrupts.
· Provide a pointer in the shape of a pen.

Windows ¾ not the display driver ¾ displays the ink. When Windows receives notice through its
InkReady function, the driver calls back into Windows to draw the ink.

For more details on display drivers, refer to the device driver kit (DDK) for Windows 95.

Recognizer
A recognizer is a DLL with functions that determine what symbol a pattern of pen strokes represents. As
illustrated in Figure 1.4, Windows allows the concurrent operation of more than one recognizer. For
example, one recognizer may specialize in English letters, another in mathematical symbols, another in
geometric shapes, and so forth.

{ewc msdncd, EWGraphic, bsd23549 3 /a "SDK_1_4.BMP"}

Each handwriting recognizer can access any number of word lists. Word lists offer a way for a recognizer
to corroborate and refine its guesses. For example, if a recognizer cannot decide whether a handwritten
word is "boy" or "looy," finding one word but not the other in a word list helps the recognizer make a more
confident choice.

Although many recognizers may be available to an application, only one serves as the system default
recognizer. This is the recognizer that Windows automatically installs and calls by default. To use other
recognizers, an application must first specifically install them. (For information about how to install
multiple recognizers, see Chapter 5, "The Recognition Process.") The Microsoft Handwriting Recognizer
(GRECO.DLL) is provided as the default system recognizer on most OEM tablet installations of
Microsoft pen services. The Microsoft Handwriting Recognizer recognizes all European letters, numerals,
and punctuation, with emphasis on English, French, and German, An application can set up a different
system recognizer by identifying the new file in the Windows registry. Appendix A explains how to set up a
new default recognizer.

Accessing the Pen API from Applications
As Figure 1.5 shows, applications that accept user input are divided into two categories: pen-aware and
pen-unaware applications. A pen-unaware application, as the name implies, is written to expect input only
through the keyboard or mouse, unaware of the existence of Windows pen services. However, if a pen
device is present, Windows 95 supports its use both as a mouse and for text entry with a pen-unaware
application. For details about how Windows allows the use of a pen with an application not written to
accept pen input, see "Pen-Unaware Applications" in Chapter 2, "Starting Out with System Defaults."

{ewc msdncd, EWGraphic, bsd23549 4 /a "SDK_1_5.BMP"}

The Pen API is designed for small handheld systems with limited memory and power, so its API consists
of 16-bit functions. Therefore, Windows provides a thunk layer for 32-bit applications to call through to the
API. The thunk layer automatically converts 32-bit function parameters and structure data to 16-bit
equivalents. The application must ensure its data will fit into the smaller sizes before calling into the Pen
API. See Appendix B for information about using the 32-bit API.

Starting Out with System
Defaults

As much as possible, the Pen application programming interface (API) handles the many complexities of
pen-based computing. A rich API leaves the developer free to concentrate on design without having to
worry about details. This chapter describes how to create a pen-based application that relies on the
system default services of the Pen API. For the sake of simplicity, the term "application" as used in this
chapter refers both to Windows-based programs and dynamic-link libraries (DLLs).

Pen-Unaware Applications
Microsoft Windows 95 supports the use of a pen even with pen-unaware applications. For such
applications, Windows provides a means for the pen to mimic both mouse and keyboard data. It does this
in two ways.

The first method, the Pen Message Interpreter, is described in the "Windows" section in the previous
chapter. The second method involves two utility "applets" called Writing Palette (WRITEPAL.EXE) and
Screen Keyboard (SK.EXE), both supplied as installed applications. Writing Palette allows the user to
enter handwritten text for those occasions when the Message Interpreter fails to detect an input prompt.
For example, when running an MS-DOS text editor in a window, the user can input handwritten text
through the Writing Palette utility. The Pen API translates the handwritten text into characters and displays
the result in the writing window. The user can then correct the text if necessary and tap the OK button
when the corrections are recognized. Windows feeds the characters to the pen-unaware text editor as a
series of WM_KEYDOWN and WM_KEYUP messages as though they were typed at the keyboard.

The Screen Keyboard applet displays an image of a typical keyboard on which the user can "type" by
tapping the keys of the on-screen keyboard with the pen. Each key is sent as soon as it is typed. This
does not require recognition because no handwriting is involved.

Pen-Aware Applications
The Pen API allows the developer to approach pen-based computing in stages. For those who wish to do
only a minimum amount of programming work and yet incorporate significant pen capabilities in an
application, the Pen API provides the DoDefaultPenInput function. DoDefaultPenInput embodies a set
of more complex API elements in one function. As its name implies, it allows applications to rely on the
system to make all of the decisions concerning pen input. The developer can incrementally enhance a
pen-based application as time and interest permit.

When called in response to a WM_LBUTTONDOWN message generated by the pen device,
DoDefaultPenInput starts a cascade of messages. These messages reflect the many steps of the
recognition process, each message serving as a notice that a next step in the process is about to occur.
The application can take some action prior to each step or simply ignore the message and let the
DefWindowProc function provide default services.

This approach follows standard Windows messaging procedures. If an application lets the message pass
through to DefWindowProc, Windows translates the pen events into the appropriate keyboard
messages. For example, handwritten characters generate appropriate WM_CHAR messages. In this way,
a developer can gradually modify an existing application to become more and more sophisticated about
pen input by adding code to handle more of the DoDefaultPenInput messages.

The following sections describe the programming convenience of using system defaults, which you might
think of as "letting the system do the work." The text also mentions various options available to the
developer who wishes to exercise more control over the recognition process. These options involve
manipulating data objects such as HRC and HPENDATA, which are fully described in Chapters 4 and 5.
The following sections serve as an introduction to the entire process of converting pen-based input to
usable data. When you later decide to incorporate additional recognition management into your
application, see Chapters 4 and 5.

Beginning an Input Session
A pen input session begins when the user touches pen to tablet and begins writing. The end of the
session depends on parameters established by the application. Usually, the session ends when the user
taps the pen outside the writing area or when a brief period of inactivity elapses. As when writing with a
real pen, people tend to pause between words or sentences to gather their thoughts; an application can
use these momentary pauses to get recognition results. A new session begins when the user begins
writing again.

When the pen first touches the tablet at the start of an input session, Windows sends a
WM_LBUTTONDOWN message to the application's main window procedure. In a pen-based
environment, this message can indicate either a true mouse event or that the pen point has touched the
tablet. The application must distinguish between these two possibilities before calling the
DoDefaultPenInput function, as shown in the following fragment:

LONG lExtraInfo;
.
.
.

switch (wMsg)
{

case WM_LBUTTONDOWN:
// If true pen-down event, call DoDefaultPenInput.
lExtraInfo = GetMessageExtraInfo();
if (IsPenEvent(wMsg, lExtraInfo)

return DoDefaultPenInput(hwnd, LOWORD(lExtraInfo));

else // No, it's a mouse
{ // button down

.

.

.

DoDefaultPenInput Messages
This section lists in chronologic order the message traffic that DoDefaultPenInput generates. It
discusses why an application might want to handle each message and explains what action
DefWindowProc takes. The sample application described in Chapter 7, "A Sample Pen Application,"
demonstrates how to handle most of these messages.

Step 1: PE_BEGININPUT Submessage
Immediately upon calling DoDefaultPenInput, an application receives a WM_PENEVENT message with
a PE_BEGININPUT submessage. Sending WM_PENEVENT and PE_BEGININPUT via the
SendMessage function is the equivalent of calling DoDefaultPenInput. The caller should not trap the
PE_BEGININPUT submessage because DefWindowProc starts the chain of events based on this
message. The application should complete all its initialization work before calling DoDefaultPenInput.

Step 2: PE_SETTARGETS Submessage
Windows sends the WM_PENEVENT message with a PE_SETTARGETS submessage to the window
that received the PE_BEGININPUT submessage. PE_SETTARGETS is important when several windows
on the screen vie for input at the same time, presenting Windows with more than one potential recipient
for the pen data. This can occur when a dialog box contains multiple edit controls or a forms program
prompts the user simultaneously with several writing areas. The user can write in different writing areas
without having to pause between each and wait for recognition results. Windows treats the writing as part
of a single input session, regardless of the targets.

DoDefaultPenInput must therefore select between targets when distributing pen data. A target is a
rectangular area associated with the handle of a window that is a valid destination for pen data. When
writing starts, all valid targets participate in the DoDefaultPenInput messaging. This allows the user to
move freely between windows ¾ for example, writing the name of a city in one control, interrupting to
write the date in another control, then moving back to the first control to add the state and zip code. The
system correctly routes pen input to the control on which ink was written or, barring that, to the control
nearest the ink.

DoDefaultPenInput handles all routing automatically. Upon receiving a PE_SETTARGETS submessage,
the application can process the message and create a TARGINFO structure that describes all valid
targets for the pen data. If the application chooses not to process PE_SETTARGETS itself,
DefWindowProc enumerates the children of the window and creates a TARGINFO structure
automatically. If the application returns FALSE to the PE_SETTARGETS submessage, Windows assumes
no targets exist and sends the pen data to the window that received PE_SETTARGETS.

For information on how to specify a target area larger than the window size, see the "PE_SETTARGETS
Submessage"section.

Step 3: PE_GETPCMINFO Submessage
If the application calls DefWindowProc to process the PE_SETTARGETS submessage, every
descendant of the window that received PE_SETTARGETS receives a PE_GETPCMINFO message. This
message is so named because it gets information about the pen collection mode (PCM). The PCM
describes the system state during an input session when the pen is writing and not operating as a mouse.

PE_GETPCMINFO gives each target the opportunity to:

· Proclaim or disclaim itself as a valid target.
· Specify termination conditions, such as timeout or range.
· Identify areas in which tapping terminates the input session.
· Do any combination of the above.

In processing PE_GETPCMINFO, the child window must fill in a PCMINFO structure that describes how
pen interaction should proceed. If the candidate window wishes to receive input from the pen and become
a true target, it can provide the coordinates of a bounding rectangle in the rectBound member of
PCMINFO. The bounding rectangle constitutes the target area of the child window; inking that occurs
within or nearest a bounding rectangle is sent to the window associated with the rectangle. If the child
window does not process PE_GETPCMINFO, Windows does not consider the window a candidate for
pen input but also does not prevent ink from overwriting the window.

DefWindowProc collects all bounding rectangles and exclusion rectangles provided by the descendant
windows and creates a master PCMINFO structure that describes the situation.

For information about how to initialize and make changes to a PCMINFO structure, see the "Starting the
Chain of Events" section in Chapter 3, "The Writing Process." See Chapter 11, "Pen Application
Programming Interface Structures," for descriptions of the structure members.

Step 4: PE_GETINKINGINFO Message
Each target specified in the TARGINFO structure created in step 2 that has a valid bounding rectangle
from step 3 receives a PE_GETINKINGINFO message. In response to this message, a child window can
set ink color and ink width, establish the ink clip region, and specify whether or not Windows should
automatically restore the screen and erase the ink after pen interaction has ceased.

Processing the message through DefWindowProc sets the system default ink attributes, uses the
window boundary for the ink clip region, and forces automatic restoration of the screen after input.
DefWindowProc merges the responses from each target into a master INKINGINFO structure.

Step 5: Master PCMINFO and INKINGINFO Structures
Having created a master PCMINFO structure and a master INKINGINFO structure, DefWindowProc
sends one more PE_GETPCMINFO message and PE_GETINKINGINFO message to the parent window
that contains the child targets. This provides the parent window a final opportunity to examine and
change, if necessary, the system's assumptions about the impending inking event. For example, the
parent window can specify a default ink color in the INKINGINFO structure or set an exclusion region
around a screen object that had not, for some reason, handled the PE_GETPCMINFO message.

Step 6: PE_BEGINDATA Message
When pen activity destined for a particular target begins, the target first receives a PE_BEGINDATA
message. This message provides the target a way to inform DoDefaultPenInput what to do with the
data. If DefWindowProc handles this message, it assigns the pen data to a default HRC object and uses
the system recognizer for recognition. (For more information about the system default recognizer, see
"Recognizer" and "Creating the HRC.") Alternatively, the target can attach its own HRC for recognition, an
HPENDATA to store the data, or a private object of some kind associated with the target.

To govern recognition, an application should handle PE_BEGINDATA, create and configure its own HRC
object, and identify the object with the dwData member of the TARGET structure pointed to by the
message's lParam. The application calls the CreateCompatibleHRC function to create the HRC object
and set its context. This forces the system to use the new HRC. For more information about HRC and
how to create one with CreateCompatibleHRC, see "The HRC Object."

Step 7: PE_MOREDATA Message
Multiple PE_MOREDATA messages can arrive at each target window to indicate more pen data is
available. Generally, an application passes PE_MOREDATA on to DefWindowProc for default
processing. DefWindowProc accrues new data by adding it to the HRC or HPENDATA object
established in step 6.

Step 8: PE_ENDDATA Message
The PE_ENDDATA message informs a target window that input for the target has ceased. The message's
lParam points to a TARGET structure, the dwData member of which identifies the HRC or HPENDATA
created in step 6. If recognizing

input through an HRC object, the application should let DefWindowProc handle this message. However,
DefWindowProc will destroy an HPENDATA object when processing PE_ENDDATA. To preserve the
HPENDATA, the application has two choices:

· Trap the message, preventing it from reaching DefWindowProc. In this case, the HPENDATA object
outlives the input session. Note that an HPENDATA object occupies memory in the system heap.
When finished, the application must remove the object by calling DestroyPenData to avoid wasting
resources.

· Alternatively, copy the HPENDATA object with DuplicatePenData before letting the PE_ENDDATA
message fall through to DefWindowProc. However, this approach has no advantage over the
preceding method, merely trading the original object for its clone. Again, the application is responsible
for destroying the new HPENDATA object.

Step 9: PE_RESULT Message
The PE_RESULT message arrives only if the application has specified an HRC object in step 6, rather
than an HPENDATA or other object. The message signals the target window that recognition results are
ready. This message differs slightly from the others in that its lParam holds the HRC handle and not a
pointer to a TARGET structure. If DefWindowProc handles PE_RESULT, it converts the recognizer's
best guess to a string of characters and sends them to the target window as WM_CHAR messages.
Gestures are also converted to appropriate messages, such as WM_COPY or WM_PASTE.

If the application handles the message, it must not destroy the HRC for the default system recognizer.
Because DoDefaultPenInput created the default HRC, it expects to destroy it as well. The application
must not destroy objects it did not create.

At this point, an application can process any of the results itself. For example, it might check for a
recognized gesture such as the lasso or cut gesture. The procedure for examining gestures at this point
involves three steps:

1. Retrieve any recognized gesture symbols from the HRCRESULT object by calling the
GetResultsHRC function with the GRH_GESTURE argument.

2. If this call indicates the recognizer has found a gesture, the application then calls the
GetSymbolsHRCRESULT function to see if the gesture is a lasso or X mark.

3. If the gesture is a lasso or X mark, the application should examine the data further to determine the
size of the gesture, as outlined in the following example.

If the first or second test fails, indicating the recognizer has found no lasso or X mark, the application
should pass the PE_RESULT message to DefWindowProc for text processing. Note that the lasso and
cut gestures cannot exist with other gestures; therefore, the following code allocates only one
HRCRESULT object because it examines at most a single gesture:

HRCRESULT hresult; // Look at only the first
gesture
HPENDATA hpendata; // Points that comprise the
gesture
HRGN hrgn; // Screen region of the gesture
SYV syv; // Symbol value of the
gesture
UINT uRgnType; // Region type: X or LASSO
int cGest; // Count of gestures in
results

.

.

.
switch (wParam) // Handle WM_PENEVENT
messages
{

case PE_RESULT:
// Check for gesture
cGest = GetResultsHRC((HRC) lParam, // HRC

handle
 GRH_GESTURE, //

Gestures only
 (LPHRCRESULT)&hresult, //

Buffer

 1);
// Get one result

// If one gesture available, get its symbol
if (cGest == 1)
{

GetSymbolsHRCRESULT(hresult, // HRCRESULT handle
 0, //

Index to 1st syv
 (LPSYV) &syv, // Symbol

buffer
 1); // Get 1

symbol

//
// If the gesture is lasso or x, collect the
// points that make up the gesture
//
if (syv == SYV_LASSO || syv == SYV_CUT)
{

hpendata = GetPenDataHRC((HRC) lParam);
if (hpendata)
{

// Step 1: Get region of the gesture
uRgnType = (syv==SYV_LASSO) ? CPDR_LASSO :

CPDR_BOX;
hrgn = CreatePenDataRegion(hpendata,

uRngType);

// Step 2: Determine what text lies within the
// region. If the gesture covers more than one
// letter of a word but not the entire word,

assume
// it's meant for entire word.

.

.

.
// Step 3: Either select . . .
if (syv == SYV_LASSO)
{

.
// Select the text

.

.
}
// . . . or delete the text
else
{

.
// Delete the text

.

.
}
DeleteObject(hrgn);

DestroyHPENDATA(hpendata);
}

}
}
break;

default:

DefWindowProc(hwnd, message, wParam, lParam);

}

As the previous code shows, applying a gesture to text requires three steps:

1. Call the CreatePenDataRegion function to find the region covered by the gesture.
2. Determine the text that lies within the gesture's region using the Windows GetTextExtentPoint32

function or some other method.
3. Select or cut the text, according to the gesture.

Step 10: PE_ENDINPUT Message
Windows sends the PE_ENDINPUT message to the window that received the PE_BEGININPUT
submessage in step 1. An application can perform any necessary cleanup chores at this time, but should
pass the PE_ENDINPUT message to DefWindowProc.

The Writing Process
This chapter begins a series of three chapters that describe the three main stages of converting pen input
into valid computer data. This chapter looks at the writing process. The next two chapters discuss the
processes of inking and recognition.

The writing process includes the various ways a user can write input to a pen-based application. These
involve not only writing words and scribbling figures with a pen, but also gesturing with predefined pen
movements and tapping an on-screen keyboard.

This chapter is divided into three main sections, each discussing a different method by which an
application can accept writing from the pen. The first section describes the pen edit controls, which are
pen-based versions of a standard Windows edit control. The second section discusses ink input
application programming interface (API) services, which allow an application to govern pen interaction at
a lower level than edit controls. The final section briefly describes the on-screen keyboard.

Pen Edit Controls
The Pen API provides three different edit controls for pen input ¾ the handwriting edit (hedit), boxed edit
(bedit), and ink edit (iedit) controls. (The first letter of the control name is pronounced separately, as in "h-
edit.")

The first two controls are designed for text input. Characters written in an hedit or bedit control are passed
to one or more recognizers and interpreted as equivalent digital text. Usually, the interpreted text replaces
the handwritten glyphs within the control window after the recognition finishes. The iedit control serves as
a drawing area. With the exception of gestures, the iedit control does not attempt to recognize written
input but merely preserves the pen data in its raw form.

An application creates a pen edit control through the Windows CreateWindow function, specifying a
class of HEDIT, BEDIT, or IEDIT. The next three sections describe the pen edit controls in detail and
provide examples of how to create them.

The hedit Control
Except under special circumstances, the hedit control displays two sets of text. First, the handwritten
characters appear as written by the user, formed by the ink trail of the pen. When the writing is
recognized, the handwritten ink disappears from the screen, replaced within the control window by the
interpreted characters as determined by the recognizer. The interpreted text appears in a Windows font
as though typed at the keyboard.

The following instruction creates a multiline hedit control with left justification:

hwndHedit = CreateWindow("HEDIT", NULL,
 ES_MULTILINE | ES_LEFT |
 WS_CHILD | WS_VISIBLE,
 CW_USEDEFAULT, CW_USEDEFAULT,
 CW_USEDEFAULT, CW_USEDEFAULT,
 hwndParent, CHILD_ID, hinstCurrent, NULL);

The styles of ES_MULTILINE and ES_LEFT do not constrain the freeform approach of handwriting in an
hedit control. The user can write anywhere on the pen tablet allowed by the control ¾ usually within or
near the control window. The styles determine the format of the resulting interpreted text displayed in the
control.

The hedit control is a pen-aware version of the default Windows 3.1 edit control. The hedit control not only
supports handwritten characters and gestures, but also responds normally to keyboard and mouse events
in the same way as an edit control. An application can use an hedit control anywhere a regular edit control
will work, including dialog boxes. In fact, specifying EDIT class for a control in Windows 95 automatically
creates an hedit control. The hedit control is visually identical to a standard control except that it displays
a pen pointer instead of an I-beam pointer. Single-line hedit controls also display a lens button when a
pen is present. When specifying an HEDIT control for a dialog box in a resource, use the DIALOGEX
resource. Refer to the DIALOGEX resource description in the Win32 SDK tools documentation for a more
information on using the HEDIT control class.

With a window style of ES_READONLY, an hedit window can accept no pen input. The pointer within the
control does not change to a pen.

An hedit control processes tabs and carriage returns differently depending on whether they are entered
as gestures or typed from the keyboard. If the user draws a tab or carriage return gesture in a multiline
hedit control, the control inserts a tab or carriage return character into the text. For tabs and carriage
returns entered from the keyboard, an hedit control in a dialog box mimics the standard dialog box
behavior ¾ that is, pressing the TAB or RETURN key passes control respectively to the TABSTOP or
DEFPUSHBUTTON statement given in the dialog box template.

hedit Control Messages
The Pen API defines the WM_PENCTL message and its alias, WM_HEDITCTL. An application can send
the WM_PENCTL message to an hedit control like this:

lRet = SendMessage(hwndHedit, WM_PENCTL, wParam, lParam);

The wParam parameter of WM_PENCTL contains an identifier for an HE_ submessage, as listed in
Chapter 12, "Pen API Messages." The lParam specifies a value dependent on the HE_ submessage. For
more information about the wParam and corresponding lParam values, see the entry for WM_PENCTL
messages in Chapter 12, "Pen Application Programming Interface Messages."

Sizing the Writing Area with Control Messages
An hedit control must make allowances for handwriting input by providing a sufficiently large area in which
to write. Typically, this area incorporates the control window itself plus an ample margin around the border
of the window. Besides increasing user comfort, this extra space helps ensure parts of written characters
are not inadvertently clipped, making them difficult to recognize. For example, the cut gesture X often
extends above the text selected for deletion. Losing part of the gesture at the edge of the control window
can make it less recognizable.

Note that adjusting a control's writing area does not change the appearance or size of the control window
on the screen. It only specifies an invisible area overlaying the window; any ink within the writing area
belongs to the control. It is possible, though not recommended, to enlarge the writing areas of two nearby
controls so that they overlap. In this case, Windows assumes ink within the overlapping area belongs to
only one of the control windows, according to normal Windows z-ordering.

The Pen API provides two methods for an application to adjust the size of the control writing area. These
methods involve either receiving a PE_SETTARGETS submessage or sending an HE_SETINFLATE
submessage. The following sections describe both methods.

PE_SETTARGETS Submessage
As described in the "DoDefaultPenInput Messages" section in Chapter 2, Windows sends a
PE_SETTARGETS submessage to the application's window procedure before ink collection begins. This
submessage gives the application the opportunity to set the target writing areas by specifying a new
TARGINFO structure identified by lParam. The structure member rgTarget contains an array of TARGET
structures, one for each target area. The rectangle in the rectBound member of TARGET specifies each
target's writing area. The following code fragment shows how to set a writing area 4 pixels larger than the
boundaries of the child window:

#define NTARG 3 // Number of target windows
#define MARGIN 4 // Inflation margin in pixel units

LPTARGINFO lpti; // Allocate new TARGINFO structure
HWND hwndCtl[NTARG]; // Handles to child windows
RECT rect; // Bounding rectangle of child
RECTL rectl; // Long version of bounding rect
HGLOBAL h;

.

.

.
h = GlobalAlloc(sizeof(TARGINFO) + (NTARG - 1)*sizeof(TARGET));
lpti = GlobalLock(h);
lpti->cbSize = sizeof(TARGETINFO);
lpti->wFlags = 0;
lpti->htrgOwner = HtrgFromHwnd(hWnd);

lpti->cTargets = NTARG;

for (i=0; i < NTARG; i++)
{

GetWindowRect(hwndCtl[i], (LPRECT) &rect);
rectl.left = (LONG) (rect.left - MARGIN); // Inflate
rectl.top = (LONG) (rect.top - MARGIN); // rectangle
rectl.right = (LONG) (rect.right + MARGIN); // by MARGIN
rectl.bottom = (LONG) (rect.bottom + MARGIN); // pixel units
lpti->rgTarget[i].idTarget = i;
lpti->rgTarget[i].htrgTarget = HtrgFromHwnd(hwndCtl[i]);
lpti->rgTarget[i].rectBound.left = rectl.left;
lpti->rgTarget[i].rectBound.right = rectl.right;
lpti->rgTarget[i].rectBound.top = rectl.top;
lpti->rgTarget[i].rectBound.bottom = rectl.bottom;

}

If the Windows DefWindowProc function handles the PE_SETTARGETS submessage, it creates a
TARGINFO structure identifying all child windows as targets. DefWindowProc does not inflate writing
areas; that is, it sets the writing area for each child window within the window borders.

HE_SETINFLATE Submessage
An application can also enlarge a control's writing area by sending the submessage HE_SETINFLATE to
the control window specifying a RECTOFS structure:

typedef struct {
 int dLeft; // Left margin
 int dTop; // Top margin
 int dRight; // Right margin
 int dBottom; // Bottom margin
 } RECTOFS FAR * LPRECTOFS;

The RECTOFS structure does not contain the coordinates of a writing rectangle per se; instead, it
contains the dimensions of the additional writing margin around the control window. The margins specify
how many pixel units to add to each member of the windows rectangle. Margins conform to the x-y screen
coordinate system. Thus, to inflate a writing area, specify negative values for dLeft and dTop as shown
here:

#define MARGIN 4 // Inflation margin in pixel units
RECTOFS rectofs = { -MARGIN, // Structure of window margins
 -MARGIN,
 MARGIN,
 MARGIN};

.

.

.
wParam = HE_SETINFLATE;
lParam = (LONG)((LPRECTOFS) &rectofs);
lRet = SendMessage(hwndHedit, WM_PENCTL, wParam, lParam);

An application can retrieve a window's current inflation margins with the submessage HE_GETINFLATE
like this:

wParam = HE_GETINFLATE;
lParam = (LONG)((LPRECTOFS) &rectofs);

lRet = SendMessage(hwndHedit, WM_PENCTL, wParam, lParam);

This call fills the RECTOFS structure pointed to by lParam with the control window's current margins.

Notification Messages
An hedit window's parent receives the same EN_ notification messages as the parent of a standard edit
window. The parent receives a WM_COMMAND message in which the low-order word of the wParam
parameter contains the control ID number and the lParam parameter contains the edit window handle. In
16-bit applications, the high-order word of lParam also contains the notification value. In 32-bit
applications, the high-order word of wParam contains the notification. The hedit control also provides HN_
notifications, described in Chapter 12, "Pen Application Programming Interface Messages."

The hedit control also sends a WM_CTLINIT message to its parent windows when created. The wParam
parameter holds the constant CTLINIT_HEDIT and lParam points to a CTLINITBEDIT structure. The
structure contains the current system assumptions concerning the appearance and behavior of the hedit
control. The parent window has the option of changing any of these assumptions.

Printing an Edit Control
An application can display a pen edit control in any device context by sending the control a WM_PRINT
message. The message's wParam contains the HDC handle for the device context. This technique, which
applies to all pen edit controls, provides a means for printing the contents of a control window.

The bedit Control
The bedit (boxed edit) control is a variation of the hedit control. All characteristics of an hedit control
described in the preceding section also apply to the bedit control, with two exceptions:

· A bedit window displays writing guides in which the user must write. Interpreted text returned from the
recognizer replaces the handwritten characters within the guides.

· A bedit control does not support edit control styles ES_READONLY, ES_CENTER, ES_LEFT, and
ES_RIGHT. (Text in a bedit is left aligned.)

An application can specify guides either as a comb or as a set of boxes, as shown in Figure 3.1. The
comb consists of a horizontal line with spaced tick marks. The user writes individual characters between
the marks.

{ewc msdncd, EWGraphic, bsd23550 0 /a "SDK_02.BMP"}

These visual guides can greatly improve recognition because they remove from the recognizer the
significant burden of correctly segmenting the text into separate characters. For example, consider Figure
3.2, which shows a word written in an hedit control.

{ewc msdncd, EWGraphic, bsd23550 1 /a "SDK_03.BMP"}

In this case, the recognizer would probably have difficulty choosing between the words "clean" and "dean"
because of the narrow spacing between the first two strokes. The bedit control removes such ambiguities.
By writing within the guides of a bedit control, the user implicitly informs the recognizer what strokes
compose a single character.

For a description of how the bedit control has been improved in Windows 95, see Appendix A,
"Differences Between Versions 1.0 and 2.0 of the Pen Application Programming Interface."

Windows treats characters in a bedit control as a continuous stream of text. If the control contains more
than one row, text wraps at each row end without regard to word boundaries. The EM_SETWORDBREAK
message has no effect on a boxed edit control.

An application creates a bedit control with the Windows CreateWindow function, specifying a window
class of BEDIT. The following code shows how to create a multiline bedit control:

hwndBedit = CreateWindow("BEDIT", NULL,
 ES_MULTILINE | WS_CHILD | WS_VISIBLE,
 CW_USEDEFAULT, CW_USEDEFAULT,
 CW_USEDEFAULT, CW_USEDEFAULT,
 hwndParent, CHILD_ID, hinstCurrent, NULL);

The BOXLAYOUT structure governs the height and style of the box grid within the bedit control. Its style
member accepts one of the following BXS_ values:

Style Description
BXS_NONE Resets current box style to the default comb

style.
BXS_RECT Specifies a grid of closed rectangular boxes.
BXS_BOXCROSS Specifies small crosses at the center of each

box. This is used mainly to aid recognition of
certain Far Eastern languages.

To set box height and style, fill a BOXLAYOUT structure with the desired values and pass it as a
submessage of WM_PENCTL, as shown here:

 BOXLAYOUT boxlayout;
.
.
.

 boxlayout.cyCusp = 6; // Box sides are 6 pixels high
 boxlayout.cyEndCusp = 6; // Ends should be the same
 boxlayout.style = BXS_RECT; // Grid of closed boxes
 iRet = SendMessage(hwndHedit, WM_PENCTL, HE_SETBOXLAYOUT,
 (LONG)((LPBOXLAYOUT) &boxlayout));

Refer to Chapter 11, "Pen Application Programming Interface Structures," for a more detailed description
of the BOXLAYOUT structure. The next section explains how to set the system assumptions about the
appearance of a bedit control.

bedit Control Messages
The bedit control sends a WM_CTLINIT message to its parent windows when created. The wParam
parameter holds the constant CTLINIT_BEDIT and lParam points to a CTLINITBEDIT structure. The
structure contains the current system assumptions concerning the appearance and behavior of the bedit
control. The parent window has the option of changing any of these assumptions.

An application can also initialize a bedit control for a dialog box by using a DIALOGEX resource in the
dialog resource file (.RC) and specifying a CONTROL statement with a class of BEDIT or specifying a
BEDIT edit control class. In this case, the control still sends the WM_CTLINIT message. However, the
CTLINITBEDIT structure reflects the specifications of the BEDIT class statement instead of the system
defaults. As before, the parent window can modify the structure if desired. Refer to Chapters 11 and 12 for
descriptions of the CTLINITBEDIT structure and WM_CTLINIT message, respectively. Refer to the
DIALOGEX resource description in the Win32 SDK tools for more information on using the BEDIT control
class.

The EM_LIMITTEXT message deserves special mention because it has changed slightly from version 1.0
of the Pen API. The message now sets the maximum number of bytes of text, rather than the number of
boxes, that the control can hold. Note that although a newline character occupies only one box, the
newline itself ¾ carriage return and linefeed ¾ takes 2 bytes. Certain Far Eastern languages also require
2 bytes per character.

Thus, the EM_LIMITTEXT message has the same effect on bedit controls as it does on hedit and edit
controls. For example, the instruction

SendMessage(hwndBedit, EM_LIMITTEXT, 50, 0L);

sets to 50 the number of bytes the bedit control can accept. This has the following effects on the control:

· If the user attempts to write the 51st byte, the control beeps and ignores the input.
· If the user inserts text into existing text, the control beeps and ignores further input after the total

number of bytes equals 50.

Using bedit Controls in Dialog Boxes
Windows determines the number of box cells that can fit within a control window based on the window
dimensions and the cell widths given in a GUIDE structure. Although the Pen API does not provide a way
to explicitly set the number of boxes displayed in a bedit control, an application can imply the number by
adjusting the size of the control window or the size of the cells. Under certain circumstances, however,
Windows may change the dimensions of a bedit control in a dialog box, thus potentially decreasing or
increasing the number of box cells within the bedit.

Usually, this makes no difference to the developer or the user. But if your application must always show a
specific number of boxes within a bedit, this section explains how to forestall or handle any changes.

By default, Windows sizes a dialog box and its controls based on the system font. If the dialog template
requests a different font with a FONT statement and the font is not available when Windows creates the
dialog box, Windows selects an available font that best matches the requested font. It then scales the
dialog box and the controls within it according to the size of the selected font, but does not also scale the
bedit guides. Thus, although a bedit window may change in size because of new scaling, the size of the
boxes within it remain the same. For this reason, the window may end up with fewer or more cells than
the programmer expects.

To ensure a bedit window always displays a specific number of cells, use one of the following techniques:

· Remove the FONT statement from the dialog template and let Windows use the system font in the
dialog box controls.

· Specify a font likely to be always available. However, this technique cannot guarantee correct results
for an application that must run under many different configurations of Windows.

· Readjust the size of the bedit window after Windows has changed it. When processing
WM_INITDIALOG, an application can call the GetWindowRect function to see whether Windows has
resized the bedit control window. If so, the application can restore the window's original size with
either the MoveWindow or SetWindowPos function.
Note that this technique assumes a generous blank area surrounds the control, so that if your
application enlarges the control window while Windows shrinks the rest of the dialog box, the various
components of the dialog box do not overlap.

· Recalculate the GUIDE values if Windows has changed the window size.

By default, all the controls within a dialog box use the font selected for the dialog box. An application can
set a different font in bedit controls within the dialog box by sending a WM_SETFONT message when
processing WM_INITDIALOG.

The iedit Control
The ink edit (iedit) control provides easy formatting and manipulation of ink input. It is not designed for
text input, and in this regard differs from the other two pen edit controls, hedit and bedit. Think of iedit
instead as a convenient drawing area suitable for sketches, diagrams, signatures, doodling ¾ any sort of
pen input that does not need to be recognized as text. However, an application can collect handwritten
text as input from an iedit control and later transfer it to an hedit or bedit control for editing, if desired, or
send it to a recognizer for recognition.

An iedit control ignores most keyboard input because the user cannot type text into an iedit window.
However, an iedit control supports the following keystrokes and key combinations as convenient
shortcuts:

Keystroke or key combination Effect
DEL Delete selected strokes.
CTRL+X Cut selected strokes to clipboard.
CTRL+C Copy selected strokes to clipboard.
CTRL+V or CTRL+P Paste stroke from clipboard
CTRL+A Select all strokes.
CTRL+Z Undo last command.

An iedit window can scroll like any other edit control. Specifying a window style incorporating
WS_VSCROLL and WS_HSCROLL creates a scrollable drawing area of 32,767 by 32,767 coordinate
units. Scroll bars appear on the iedit window only when ink resides outside the current visible area. This
behavior mimics the Control Panel window, which displays scroll bars only when an icon lies hidden
beyond the boundaries of the window.

The following sample procedure demonstrates how to use iedit to create a drawing area within a single
window. After creating the main parent window, the procedure InitInstance copies the window's
coordinates into a RECT structure. It then uses the results when sizing the child iedit window so that the
child window entirely overlays its parent.

HWND vhwndMain; // Main window
HWND vhwndIedit; // iedit control window

.

.

.
BOOL InitInstance(HINSTANCE hInstance, int nCmdShow)
{

 RECT rect; // Main window rectangle

 //
 // Create main window
 //
 vhwndMain = CreateWindow(
 "StylusClass", // Window class name
 "Stylus Sample Program", // Text for title bar
 WS_OVERLAPPEDWINDOW, // Window style
 CW_USEDEFAULT, // Default horizontal position
 CW_USEDEFAULT, // Default vertical position
 CW_USEDEFAULT, // Default width
 CW_USEDEFAULT, // Default height

 NULL, // No parent
 NULL, // Class default menu
 hInstance, // Window owner
 NULL); // Unused pointer

 if (!vhwndMain) // If can't create window,
 return FALSE; // exit

 //
 // Create iedit control window within main window
 //
 GetClientRect(vhwndMain, (LPRECT) &rect);

 vhwndIedit = CreateWindow(
 "IEDIT", // Window class name
 NULL, // No title bar
 WS_CHILD | WS_VISIBLE | // Window style
 WS_HSCROLL | WS_VSCROLL,
 0, // Overlay control window
 0, // onto parent window
 rect.right - rect.left, // Use parent width
 rect.bottom - rect.top, // and parent height
 vhwndMain, // Parent window handle
 (HMENU) CHILD_ID, // Child ID
 hInstance, // Window owner
 NULL); // Unused pointer

 if (!vhwndIedit) // If problem,
 return FALSE; // return error code

 SetFocus(vhwndIedit); // Give control immediate focus
 ShowWindow(vhwndMain, nCmdShow); // Display main window
 UpdateWindow(vhwndMain); // Force WM_PAINT message

 return TRUE; // Return success
}

iedit Control Messages
When created, an iedit control behaves similarly to a bedit control, as described in the "bedit Control
Messages" section. The iedit sends a WM_CTLINIT message to its parent window. The message's
wParam parameter contains the constant CTLINIT_IEDIT and lParam points to a CTLINITIEDIT structure.
The structure contains the current system assumptions concerning the appearance and behavior of the
iedit control.

An application can initialize an iedit control in a dialog box by specifying the desired attributes in an IEDIT
statement in the .RC file. See "bedit Control Messages" for details. For information about the
CTLINITIEDIT structure, see Chapter 11.

Ink Input
The pen edit controls discussed previously provide a simple and efficient method for an application to
accept handwritten input. Pen edit controls continue the philosophy and design of a standard Windows
edit control; that is, they place the burden of getting user input on the system rather than the application.

However, ink input API services also offer an application low-level control over the writing process. Ink
input allows an application to gather raw data from the pen, then process it in any way it wishes. For
example, the application can manage its own inking or even postpone inking to a later time. It can
massage or filter the pen data in some way ¾ say, by rotating an image based on pen movement. It can
pass the data to a handwriting recognizer or simply throw the data away. Ink input offers an application
greater freedom with ink data than simply parsing it for characters.

As you might expect, the increased control afforded by ink input requires increased programming effort.
The flexibility of ink input does not allow a simple recipe of tasks, but in broad terms the three main steps
are as follows:

1. Start the chain of events.
2. Collect and display data.
3. Process the data.

An application can rely on the DoDefaultPenInput function to collect and process ink input. For a
description of this function, see Chapter 2, "Starting Out with System Defaults." The following sections
focus on the lowest-level API services. Through these low-level services, an application has complete
control over ink input. These are the same services DoDefaultPenInput calls internally. If you have read
Chapter 2, the message traffic described here will seem familiar.

The PENAPP sample application described in Chapter 7, "A Sample Pen Application," demonstrates how
to use the low-level API services for ink input. Most of the code fragments in the following sections appear
in the PENAPP.C source listing located in the SAMPLES\C\PENAPP directory.

Starting the Chain of Events
When an application receives a WM_LBUTTONDOWN message, that message signals the beginning of
an input session. (For a definition of input session, see "Beginning an Input Session" in Chapter 2.) The
following code fragment shows how to handle the message when not calling DoDefaultPenInput:

INKINGINFO inkinfo;
PCMINFO pcminfo;
HPCM hpcm;
LONG lExInfo;
int iRet = TRUE;

.

.

.
switch (wMsg)
{

case WM_LBUTTONDOWN: // Pen
down (maybe)

lExInfo = GetMessageExtraInfo();

if (IsPenEvent(wMsg, LOWORD(lExInfo)) // If true pen down,
{ //

take the actions
. //

described in the
. //

text below
.

}
else // No,

it's a mouse
{ //

button down

The application initializes a PCMINFO structure and INKINGINFO structure in preparation for data
collection and display. DoDefaultPenInput handles this task automatically, then provides the application
an opportunity to selectively change the default values. (For a description of the submessages
PE_GETPCMINFO and PE_GETINKINGINFO, see "DoDefaultPenInput Messages" in Chapter 2.) If it
does not call DoDefaultPenInput, an application must initialize the structures itself, as shown here:

#define TIME_OUT 1000 // Time-out in msec
PCMINFO pcm;
INKINGINFO ink;

.

.

.
pcm.cbSize = sizeof(PCMINFO); // Required
pcm.dwPcm = PCM_TIMEOUT | PCM_RECTBOUND; // When to end session
pcm.dwTimeOut = TIME_OUT; // Time-out value in ms
GetWindowRect(hwnd, (LPRECT) &pcm.rectBound); // Use window borders
ink.cbSize = sizeof(INKINGINFO); // initialize

. // the INKINGINFO

. // structure "ink"

.

The above lines specify that the input session ends when the pen travels (or taps) outside the hwnd
window or pauses for the number of milliseconds set by the constant TIME_OUT. For a detailed
description of these structures, see the entries for PCMINFO and INKINGINFO in Chapter 11, "Pen
Application Programming Interface Structures."

Collecting and Displaying Data
After initializing the necessary structures, the application calls StartPenInput to begin the process of
collecting ink data:

hpcm = StartPenInput(hwnd, LOWORD (lExtraInfo),
 (LPPCMINFO) &pcm, NULL);

The returned value hpcm is a handle to the pen collection mode ¾ that is, the input session ¾ that
StartPenInput begins. The variable lExtraInfo is the value returned by GetMessageExtraInfo called
when first processing the message WM_LBUTTONDOWN (see the preceding code fragment). Note that
the StartPenInput call initiates ink collection, not ink display. The application must take separate steps to
begin inking immediately after StartPenInput returns.

Inking is the process of displaying a trail of bits behind the tip of the pen as it moves across the surface of
the digitizer, simulating the ink dropped by a real pen. If necessary, an application can take on the burden
of real-time inking by hooking hardware interrupts with SetPenHook and calling the appropriate graphics
device interface (GDI) functions to incrementally display ink. However, the Pen API provides a much
simpler and more convenient method with the StartInking function.

As the PCMINFO structure governs StartPenInput, the INKINGINFO structure determines how
StartInking operates. To turn on inking with StartInking, an application supplies the handle returned by
StartPenInput and a pointer to the initialized INKINGINFO structure, like this:

iRet = StartInking(hpcm, LOWORD (lExtraInfo),
 (LPINKINGINFO) &ink);

StartInking offers flexibility in how it displays ink. By modifying values in the INKINGINFO structure, an
application can change ink color as the pen moves over a specified screen area or it can prevent ink from
overwriting a screen object. With the wFlags member of INKINGINFO, an application can request
automatic screen restoration to erase the ink. In this case, Windows replaces the ink trail with the original
screen contents overwritten by the ink. This is much faster and simpler than repainting an entire window.
Alternatively, an application can prevent ink erasure when pen input ends if, for example, it wants to
preserve annotations or other handwritten notes on the screen. The StartInking function allows both
scenarios.

When StartPenInput returns, a stream of WM_PENEVENT messages begins to arrive at the application
window procedure. These messages contain submessages that represent current pen activity, such as
PE_TERMINATING, PE_PENMOVE, PE_PENDOWN, and PE_PENUP. These submessages represent
milestones in the system's ongoing process of collecting data from the pen driver. Each message affords
an application the opportunity to gather the raw pen data that has accumulated since the last
WM_PENEVENT message.

Windows maintains an internal buffer for data collection, informally named "the ten-second buffer" as a
reminder of its limitations. An application should regularly drain the internal buffer by copying data from it
at every opportunity afforded by the WM_PENEVENT messages. If it responds to no other event, the
application must at least collect data when it receives the PE_BUFFERWARNING submessage, which
indicates the internal buffer is more than half full.

To gather the data, an application calls GetPenInput. This can be done either in a polling model or in an
event-driven model.

In the polling model, the application must repeatedly call GetPenInput to get data. It is important for the
application to yield periodically; for example, by calling the PeekMessage function. A fast loop can
potentially process the points before the system can collect more. In this case, successive calls to
GetPenInput return 0 until the user writes some more. Polling is typically terminated when GetPenInput

detects and returns a termination condition specified in StartPenInput.

In the event model, the application calls GetPenInput in response to each WM_PENEVENT message.
The following fragment shows a typical message handler that accumulates ink coordinates in an array of
POINT structures. The example assumes StartPenInput has already been called:

POINT rgPt[MAX_POINTS]; // Array of POINT structures
STROKEINFO si; // Receives pen stroke info

.

.

.
switch (wParam) // Process WM_PENEVENT message
{

case PE_PENDOWN: // On any of these events,
case PE_PENMOVE: // get all points currently
case PE_PENUP: // in the internal buffer
case PE_TERMINATING:
case PE_BUFFERWARNING:

GetPenInput(hpcm, (LPPOINT) rgPt, NULL, NULL,
 MAX_POINTS, (LPSTROKEINFO) &si);

//
// Latest batch of pen coordinates is now collected
// into rgPt array. At this point, the coordinates can be:
// (1) Passed to a recognizer (or recognizers)
// (2) Passed to a target or control
// (3) Placed into an HPENDATA object
//

.

.

.
break;

case PE_TERMINATED:

// Input session has ended. Do any required
// clean-up work and display the results.

.

.

.
break;

The example continually calls GetPenInput while the pen is in motion until it receives a
PE_TERMINATING submessage, indicating the data flow is about to stop. Windows sends a
PE_TERMINATING message when it detects one of the termination conditions specified in the PCMINFO
structure. Typically, the input session ends when the user taps the pen outside a given tablet area or
when a specified period of pen inactivity elapses.

An application may need to call StopPenInput to stop further data collection. The call to StopPenInput is
not necessary if the input session ends because of a condition defined in the PCMINFO structure. In this
case, the system calls StopPenInput internally. However, if the application terminates the input session
for any other reason, it must call StopPenInput explicitly. Unless your application defines all possible
termination conditions in a PCMINFO structure, it should call StopPenInput on detection of a condition
that requires termination. Even if the system has already called the function, subsequent calls do no
harm.

The preceding description also applies to StopInking, provided the application has called StartInking to
display ink. The system calls StopInking automatically if it detects one of the termination conditions

defined in the PCMINFO structure; otherwise, the application should call StopInking explicitly when
required.

Processing the Data
The GetPenInput function accumulates the coordinates of the pen stroke in an array of POINT structures
and places information about the stroke in a STROKEINFO structure. This data is "raw" in that it
represents a literal history of the pen movement. Some applications will require no more than this.
However, further processing of the raw data using other functions of the Pen API usually requires placing
the data into an HPENDATA or HRC object.

The next two chapters examine these objects thoroughly and continue the code fragment outlined
previously. Chapter 4, "The Inking Process," describes how an application can alter or manipulate ink
data with an HPENDATA object. Chapter 5, "The Recognition Process," describes the HRC object, which
pertains solely to handwriting recognition.

The On-screen Keyboard
The hedit and bedit controls automatically provide user access to the on-screen keyboard. In other
situations, an application can display the on-screen keyboard as required by calling the ShowKeyboard
function.

Besides displaying and hiding the on-screen keyboard, ShowKeyboard can also move and minimize the
display and select different keyboard types. For a detailed description of the capabilities of
ShowKeyboard, see Chapter 10, "Pen Application Programming Interface Functions." For other
considerations concerning ShowKeyboard, see the "Recognition: Use and Misuse" section in Chapter 6.

The Inking Process
This chapter introduces the inking process, in which an application collects and manipulates ink data
written by the user. The inking process is a logical next step from the writing process, described in the
preceding chapter. In the writing process, the application provides the means for the user to enter ink. In
the inking process, the application assembles the ink data, optionally modifies it, and applies it to some
task.

The inking process pertains to ink data collected for its own sake rather than immediately passed on to a
recognizer for interpretation. Although an application can later submit gathered data to a recognizer, the
inking process deals with ink that "stays ink" rather than serving as transitory symbols immediately
converted into recognized characters.

The HPENDATA data object serves as the major instrument in the inking process. The first part of this
chapter describes HPENDATA and the various application programming interface (API) functions that
serve it. Example code fragments throughout illustrate how to store and manage ink data with the
HPENDATA services.

An application can refer to the data in an HPENDATA object by stroke and point indices, or time intervals.
For viewing and manipulating ink data that falls within specified time intervals, the Pen API provides the
HINKSET object. The last section of this chapter, "The HINKSET Object," examines HINKSET and its
corresponding API functions.

The HPENDATA Object
An application accesses ink data with HPENDATA, which stands for "a handle to pen data." Windows
stores the pen data in a block of memory, called the HPENDATA object. This data structure is analogous
to the other Window "H" data types such as HDC, HCURSOR, and HPEN. HPENDATA shares certain
similarities with these data types:

· The handle references an internal data structure that resides in memory.
· Windows provides various API functions that operate on the data.
· Developers should ignore the details of the underlying data structure and use the API functions alone

to perform the required work.

The remainder of this chapter discusses the HPENDATA object and the API functions used to manipulate
the data it contains.

Overview of HPENDATA
Windows allocates the HPENDATA object with an internal call to the Windows GlobalAlloc function.
Other Windows data objects are allocated from the USER or GDI heaps, but the large size of an
HPENDATA object necessitates allocation from the system global heap.

Windows imposes a 64K limit on the size of each HPENDATA object. At a report rate of 120 samples per
second, at 4 bytes per data point, plus some overhead data structures, minus the time the pen is not in
contact with the surface of the tablet, a single HPENDATA object can contain the data representing
roughly two and one-half minutes of pen activity.

The following section describes the internal structure of an HPENDATA memory block. Though not
recommended, your application can use this information to read ink data if necessary. However, the
internal structure of the HPENDATA block may change in future versions of Windows. Therefore,
applications should always use standard API functions to read from an HPENDATA object.

Important Under no circumstances should an application write directly into an HPENDATA block.
The Pen API provides functions for modifying ink data safely. Directly changing point data in the block
can cause hazardous side effects.

Data Within an HPENDATA Object
Figure 4.1 illustrates the internal structure of an HPENDATA object.

{ewc msdncd, EWGraphic, bsd23551 0 /a "SDK_04.BMP"}

Windows stores the pen data in memory in a simple hierarchy. Data points are grouped by strokes in the
order in which they are entered. The HPENDATA block of memory begins with a descriptive header area.
The following sections describe the data points, the stroke headers, and the main header that make up an
HPENDATA object.

Note that the drawing in Figure 4.1 is not to scale. The data points generally represent a much larger
proportion of the memory block than the header components.

Data Points
The data points associated with each stroke are initially tablet coordinates with a resolution of 0.001 inch
and an origin at the upper left corner of the tablet. Tablets must report points in this scale regardless of
their actual resolution. The Pen API provides functions to scale the points to other metric systems. It is not
necessary for the data in an HPENDATA object to remain at a resolution of 0.001 inch.

If Windows is running in portrait mode, the tablet still reports coordinates with the upper left corner of the
tablet corresponding to the current upper left corner of the display. The developer need not be concerned
with the current orientation of the screen. The (0,0) coordinate of the Windows display always
corresponds to (0,0) on the tablet.

The HPENDATA object can contain additional information supported by the pen device, such as pen
pressure, angle, and rotation. The main header section of the HPENDATA object specifies how this
additional information is stored in the stroke data areas for each data point. Internally, such data, which
reflects original equipment manufacturer (OEM) hardware, is stored immediately following the block of
coordinates for a stroke. This is called OEM data.

Stroke Headers
A stroke refers to the data points collected while the pen is in contact with the tablet. These are called
pen-down points. When the user lifts the pen, the stroke ends. A new stroke begins when the pen next
touches the tablet. Some tablets also support proximity strokes, which consist of points received when the
pen is not in contact with the tablet but near enough for the tablet to sense the pen movement. Such
points are called pen-up points; a stroke consisting of pen-up points is said to have a pen-up state.

As Figure 4.1 shows, a stroke header prefaces each collection of pen coordinates that make up a single
stroke. Note that the structure of the stroke header in version 2.0 of the Pen API is different from the
stroke header of version 1.0, because, instead of the STROKEINFO structure used in version 1.0, the
stroke header now consists of a variable-length array . The current STROKEINFO structure is still
compatible with version 1.0 stroke headers.

Figure 4.1 shows strokes of different sizes. This is because the pen can be in contact with the surface of
the tablet for longer or shorter periods of time, resulting in more or fewer points of data. The length of a
single stroke is limited only by the 64K maximum size of an HPENDATA memory block.

Main Header
A PENDATAHEADER structure is the first part of the main header of the HPENDATA object. The
PENDATAHEADER structure, described in Chapter 11, "Pen Application Programming Interface
Structures," contains the following information:

· Number of strokes
· Total number of points
· Number of points in longest stroke
· Size in bytes of the memory block
· Bounding rectangle of all pen-down points
· Ink color
· Ink width
· Version

The wPndts member of the PENDATAHEADER structure describes the state of the data in the
HPENDATA object. The state of the data reflects whether the data is compressed, includes pen-up
points, or includes OEM data. The wPndts element is a bitwise-OR combination of the PDTS_ flags
described in Chapter 13, "Pen Application Programming Interface Constants."

The next component in the main header is a PENINFO structure. The PENINFO structure contains
information about the tablet device that produced the data. This information includes the tablet width,
height, resolution, report rate, proximity capabilities, and barrel-button status. For more information about
the PENINFO structure, see Chapter 11, "Pen Application Programming Interface Structures."

The cbOemData member of the PENINFO structure specifies how much (if any) OEM pen data each pen
packet contains. The format and order of the extra OEM information are contained in the rgboempeninfo
member, which is an array of OEMPENINFO structures. The OEMPENINFO structures describe the
order, minimum value, and scale of any OEM pen data the tablet reports along with the coordinate data.
Chapter 11 describes the OEMPENINFO structure in detail.

HPENDATA Functions
This section introduces the Pen API functions that manipulate ink data in an HPENDATA object. The
recognition functions described in the next chapter apply to a specific task ¾ the recognition of text. The
HPENDATA functions, however, are not so easily summed up. They are building blocks for an infinite
variety of tasks, according to the requirements and imagination of the developer. For this reason, the best
introduction to the HPENDATA functions is a simple list of their capabilities.

The following subsections group the functions into six categories and provide a brief description of each
function. These subsections serve only as an introduction to the HPE NDATA functions. For complete
details about the functions, see the appropriate reference sections in Chapter 10, "Pen Application
Programming Interface Functions." To see some of the HPENDATA functions in use, refer to the PENAPP
sample program presented in Chapter 7, "A Sample Pen Application."

The six categories of the HPENDATA functions are:

· Creating an HPENDATA object
· Displaying ink data
· Scaling ink data
· Examining ink data
· Editing or copying ink data
· Compressing ink data

The order in which functions appear in the following lists reflects either a logical sequence of discussion
or, where such criteria do not exist, simple alphabetic ordering. The order does not imply relative
importance of the functions.

Creating an HPENDATA Object
The Pen API provides five functions that allocate and free an HPENDATA object. These functions are
similar to many Windows data types.

Note It is recommended that you use only the functions from version 2.0 of the Pen API. Although
API from version 1.0 are included for backward compatibility, it is not guaranteed that they will be
supported in future versions of the Pen API.

The functions that allocate and free HPENDATA objects are as follows:

Function Description
CreatePenData Creates an empty HPENDATA object. The

application provides the PENINFO structure for
the header, the real size of any OEM data stored
with each coordinate, and the scale of the
coordinates. Superseded by CreatePenDataEx.

CreatePenDataEx Creates an empty HPENDATA object. This
function is an enhanced version of
CreatePenData that provides an application
with greater control over the contents of the
HPENDATA object.

CreatePenDataHR
C

Returns a handle to an HPENDATA object
copied from an HRC object. Since this call
creates a new HPENDATA, the application
should free the object when finished by calling
DestroyPenData, described below. The
AddPenDataHRC function reverses the process
by copying pen data to an HRC object. Chapter
5, "The Recognition Process," describes the
HRC object.

DuplicatePenData Duplicates an HPENDATA object, allowing an
application to create clones of existing pen data.
Since this call creates a new HPENDATA, the
application should free the object when finished
by calling DestroyPenData, described below.

DestroyPenData Frees the heap memory occupied by the
HPENDATA block. If the function returns TRUE,
the handle to the object is no longer valid and
should be set to NULL.

Displaying Pen Data
The Pen API provides four functions for displaying the pen data contained in an HPENDATA object. An
additional function, CreatePenDataRegion, determines the screen area necessary to display the pen
data. This enables an application to determine the screen area affected by a gesture.

The following table describes the API drawing functions:

Function Description
DrawPenData Draws pen data in the specified device context

using the Windows GDI Polyline function. The
ink width and color specified in the
PENDATAHEADER structure have no effect on
how DrawPenData renders the ink.
The rendering of the ink data produced by
DrawPenData generally does not exactly match
the rendering produced by the display driver
when the data was first collected. An application
that requires an exact replication of the original
ink rendering should call the RedisplayPenData
function.

DrawPenDataEx Draws pen data in its original color or in a given
device context. This function is an enhanced
version of DrawPenData. Besides basic
drawing capabilities, DrawPenDataEx can
control the speed at which the data is rendered,
a process called animation. This function can
also draw a selected subset of strokes or the
points within a stroke, rather than the entire pen
data.
DrawPenDataEx can display a set of sequential
strokes with a single call. Drawing nonsequential
strokes ¾ say, the second, fifth, and eighth
strokes of the pen data ¾ requires separate
calls to DrawPenDataEx for each stroke.

DrawPenDataFmt A macro function that simplifies calls to
DrawPenDataEx by specifying:
· Rendering ink data in original ink
attributes and speed (no animation).
· Entire data set is drawn (no stroke
subsets).
· Each stroke is drawn with the color and
width specified in the stroke header.

RedisplayPenData Draws pen data ink that exactly matches the
original rendering. RedisplayPenData displays
pen data with a square GDI pen brush for
maximum drawing speed. When displaying wide
lines of ink, this optimization can cause the ends
of abutting lines to appear "blocky."

CreatePenDataReg
ion

Returns a region of the screen required to show
the contents of an HPENDATA object. Another
call to the GDI function GetRgnBox returns the
bounding rectangle that holds the region. (See

also the description of GetPenDataAttributes,
which can return the bounding rectangle for the
entire set of pen data.) The application should
call the Windows function DestroyObject to free
the region when finished.

Scaling Pen Data
The Pen API provides three functions to transform or scale pen data in an HPENDATA object. The related
functions TPtoDP and DPtoTP do not operate explicitly on an HPENDATA object, but instead convert the
resolution of an array of points.

Function Description
MetricScalePenDat
a

Converts pen coordinates between metric and
English standard measurements. Metric units
are 0.1 and 0.01 millimeter; English standard
units are 0.001 inch. These scaling metrics
comply with the mapping modes set in the
Windows function SetMapMode, described in
the Windows Software Development Kit.
MetricScalePenData can also convert pen data
to display resolution. See "Converting Data to
Display Resolution" later in this chapter.

OffsetPenData Offsets the coordinates in an HPENDATA object
to make them relative to another origin. The
function adds or subtracts offset values to or
from the coordinate points. The offset values
must use the same units as the pen data.
Offsetting coordinates does not lose data. The
process is completely reversible and does not
reduce recognition accuracy.

ResizePenData Scales ink into arbitrarily sized rectangles. This
function exhibits the same weakness as the
other scaling functions. It preserves rectangle
proportions, but rounding errors prevent the
scaling process from being precisely reversible.
However, enlarging the ink data generally does
not adversely affect recognition accuracy for
data later given to a recognizer.

Examining Pen Data
The following functions enable an application to examine, directly modify, or retrieve information from an
HPENDATA object:

Function Description
BeginEnumStrokes
GetPenDataStroke
EndEnumStrokes

These three functions work in tandem.
Together, they enable an application to directly
read an HPENDATA block in memory.
Use these functions with caution and only for
reading pen data. Do not attempt to write into
an HPENDATA block.
BeginEnumStrokes returns a far pointer to
the HPENDATA memory block within the
global heap.
GetPenDataStroke retrieves pointers to point
data within the HPENDATA. Although an
HPENDATA block no longer prefaces strokes
with STROKEINFO structures,
GetPenDataStroke can retrieve a
STROKEINFO structure corresponding to any
stroke within the block.
When the application has finished with the
memory block, it must call EndEnumStrokes.
This unlocks the block in the global heap and
invalidates the pointers returned by
GetPenDataStroke. For this reason, an
application must not use the pointers once it
has called EndEnumStrokes.

GetPenDataInfo Retrieves summary information from the
pen data memory block. It is superseded by
the GetPenDataAttributes function to some
extent.

GetPenDataAttribut
es

Provides enhanced versions of some of the
capabilities of GetPenDataInfo. It also
provides additional detailed information
taken from the HPENDATA block. For
example, GetPenDataAttributes can return
· The total number of points in the
HPENDATA

· The total number of strokes
· The time the HPENDATA was created
· The device sampling rate

GetStrokeAttributes
SetStrokeAttributes

Retrieve or set information about a given
stroke in an HPENDATA object. For example,
these functions can get or set
· The pen state (up or down) for a stroke
· The ink color and width
· The absolute time the stroke occurred

GetStrokeTableAttri
butes

Retrieve or set information about all strokes in
an HPENDATA object that share a given class.

SetStrokeTableAttri
butes

For all such strokes, these functions can get or
set:
· The ink color and width.
· The user value.
· The number of entries in the stroke
table.

HitTestPenData Determines whether a given point lies near the
line of a stroke. The function accepts a
threshold value that describes a square region
around the given point on the tablet or screen.
If a stroke in an HPENDATA block passes
through the square, this function reports a "hit."
HitTestPenData considers only points with a
pen-down state.

Editing or Copying Pen Data
The functions listed below add, delete, or copy coordinate data to and from an HPENDATA object.

An empty HPENDATA object has the following value for the wPndts member of its PENDATAHEADER
structure:

PDTS_NOUPPOINTS | PDTS_NOCOLLINEAR | PDTS_NOEMPTYSTROKES

For a full list of PDTS_ values, see Chapter 13, "Pen Application Programming Interface Constants." See
Chapter 11 for a description of PENDATAHEADER.

Functions in the following list with a name prefix of Add, Insert, Extract, or Remove add to or delete from
an HPENDATA object. These functions check the results of their operation and adjust the value in
wPndts accordingly.

Function Description
AddPenDataHRC Copies the pen data from an HPENDATA object

to an HRC object. This function provides the
means for deferred recognition. An application
can gather pen data into an HPENDATA block,
manipulate or store it if desired, then later copy
the data to an HRC object for recognition.

AddPointsPenDataAppends a set of points, including a
STROKEINFO structure and any corresponding
OEM data, to an HPENDATA object.

ExtractPenDataPoi
nts

Copies points and OEM data from an
HPENDATA block to supplied buffers. The
application can convert the points to screen
resolution with the TPtoDP function to reduce
the buffer size. The application can also
optionally delete these points from the original
pen data.

ExtractPenDataStr
okes

Copies selected strokes from an HPENDATA
block, optionally creating a new HPENDATA
block containing the copied strokes.
ExtractPenDataStrokes can optionally delete
the original strokes.

GetPointsFromPe
nData

Retrieves information from an HPENDATA
object in a way similar to the
GetPenDataStroke function. However,
GetPointsFromPenData copies the required
data to buffers supplied by the application rather
than simply returning pointers to the original
data in the global heap. Therefore, the
application need not call BeginEnumStrokes
and/or EndEnumStrokes when using
GetPointsFromPenData.

InsertPenData Merges two separate HPENDATA objects into a
single object.

InsertPenDataPoin
ts

Inserts points into the stroke of an existing
HPENDATA object. InsertPenDataPoints
automatically updates the stroke and pen data
headers.

This function can adversely affect recognition
accuracy for data that must later be recognized.

InsertPenDataStro
ke

Inserts an entire stroke into an existing
HPENDATA object. InsertPenDataStroke
automatically updates the stroke and pen data
headers. The ink of the inserted stroke has
default color and width. To change these
attributes, call SetStrokeAttributes after
inserting the stroke.

PenDataToBuffer
PenDataFromBuff
er

Copy an HPENDATA object as sequential data
from and to a buffer. PenDataFromBuffer
creates and loads an HPENDATA object with
the data from the sequential buffer created by
PenDataToBuffer. These functions are used to
transfer pen data to and from a file or the
clipboard.

RemovePenDataSt
rokes

Deletes a contiguous set of strokes from an
HPENDATA object.

Compressing Pen Data
Data compression plays an important role in pen-based computing. The high sampling rates of a pen
device, combined with large amounts of input, result in large blocks of ink data. The Pen API offers three
methods of compression, each with advantages and disadvantages depending on the intended use of the
ink data.

· Removal of redundant or otherwise unwanted data from the data structure. This compression method
does not result in loss of recognition accuracy if the compressed data is later recognized.

· Reversible compression, also called "lossless" compression. Subsequently decompressing the data
produces an HPENDATA object identical to the original. Since this compression method loses no
information, the data can later be recognized with no loss of accuracy. However, the application
cannot copy the compressed data to an HRC object; it must first uncompress the data before calling
AddPenInputHRC.

· Irreversible compression, sometimes called "lossy" compression. This method produces the highest
degree of compression, but at the cost of lost information. Though the data is still perfectly suitable for
display, it cannot be uncompressed and given to a recognizer without a significant loss of recognition
accuracy. Irreversible compression is discussed later in the section "Converting Data to Display
Resolution."

Compression Functions
Following are the three compression functions provided by the Pen API.

Function Description
CompactPenData Provided only for compatibility with version 1.0

of the Pen API and may not be supported in
future versions. Use the functions
CompressPenData and TrimPenData instead.

CompressPenData Primary function used to compress and
uncompress pen data.

TrimPenData Removes selected data from an HPENDATA
object to reduce the size of the memory block.
For example, TrimPenData can remove OEM
information, timing indexes, pen-up points, and
so forth.

Converting Data to Display Resolution
Converting the points in an HPENDATA block to display resolution effectively compresses the data
because display coordinates are coarser than tablet coordinates and therefore occupy less memory.
However, the conversion is irreversible; an application cannot convert the points back to their original
tablet resolution. Moreover, converting to display coordinates virtually disallows subsequent recognition of
the data because recognizers lose accuracy when dealing with data at coarse screen coordinates.

To compress pen data to screen resolution
1. Call MetricScalePenData to convert the ink data from tablet coordinates to display coordinates.
2. Call TrimPenData with the TPD_COLLINEAR flag to remove the duplicate and collinear points.

These two steps substantially reduce the number of points in the pen data by removing many high-
resolution digitizer points. The following code fragment demonstrates these steps:

HPENDATA hpendata; // Handle to HPENDATA object
.
.
.

if (MetricScalePenData(hpendata, PDTS_DISPLAY))
iRet = TrimPenData(hpendata, TPD_COLLINEAR);

After converting the HPENDATA block to display resolution, the application can call CompressPenData
or TrimPenData to compress the points even more. For maximum compression of data intended only for
display, use the following instructions instead of the preceding example:

if (MetricScalePenData(hpendata, PDTS_DISPLAY))
if (TrimPenData(hpendata, TPD_EVERYTHING) == PDR_OK)

CompressPenData(hpendata, CMPD_COMPRESS);

The HINKSET Object
An inkset object consists of time intervals for either individual strokes or a collection of strokes. In turn, the
interval of each stroke consists of the times at which the stroke begins and ends. In this way, a pen-based
application can refer to a stroke not only by the points it contains but also by the time interval in which the
stroke occurs. A rough analogy of this sort of indirect referencing is the way some programming
languages allow the use of pointers to indicate data.

Timing information principally serves recognizers. It provides them with an additional characteristic of the
raw data that may offer clues for interpretation.

Timing information has other uses, as well. For example, it enables an application to accurately verify a
signature by comparing not only the coordinates but the duration of each stroke against a copy of the
original signature. This is an effective safeguard against forgery because of the difficulty of simultaneously
duplicating both the pattern and duration of the original signature.

An HINKSET object can contain up to 5,460 intervals. An interval is expressed as an INTERVAL
structure, which consists of two ABSTIME structures. Each INTERVAL structure identifies a stroke's start
and stop times in milliseconds. See the appropriate reference sections in Chapter 11 for type definitions of
the ABSTIME and INTERVAL structures.

The HINKSET Functions
The Pen API provides six functions for creating, adding data to, and destroying an HINKSET object. The
functions automatically ensure intervals within an inkset remain in chronological order.

Function Description
CreateInkset Creates an empty inkset into which intervals

can be added with the AddInksetInterval
function.

CreateInksetHRCRES
ULT

Retrieves the intervals for a specified series
of symbols returned by the recognizer.

AddInksetInterval Adds a single INTERVAL structure to an
existing HINKSET object. Intervals need not
be added in any particular order because
AddInksetInterval automatically sorts the
intervals chronologically and merges
overlapping intervals.

GetInksetInterval Copies a series of intervals from an
HINKSET object to an array of INTERVAL
structures.

GetInksetIntervalCou
nt

Returns the number of intervals in an
HINKSET object.

DestroyInkset Frees the memory occupied by an HINKSET
object and invalidates its handle.

Timing Information
For uncompressed data, a stroke's interval implies the number of points in the stroke. An application can
obtain this number directly from a STROKEINFO structure. The following is of academic interest only,
illustrating how time intervals correspond to the point data within a stroke.

First, an application gets the device sampling rate with a call to GetPenDataInfo. The sampling rate is the
number of points the pen device driver sends to Windows during each second of pen activity.

HPENDATA hpndt;
PENINFO peninfo;
int nSamplingRate;

.

.

.
if (GetPenDataInfo(hpndt, NULL, (LPPENINFO) &peninfo, 0))
 nSamplingRate = peninfo.nSamplingRate;

Alternatively, an application can query the pen device driver directly for the sampling rate, as described in
"Recognition Functions" in Chapter 8, "Writing a Recognizer."

The number of points in a stroke can now be determined from the start and stop times in the stroke's
INTERVAL structure:

INTERVAL interval;
int nSamplingRate, nPoints, nms;

.

.

.
// Compute number of milliseconds in interval
nms = ((interval.atEnd.sec - interval.atBegin.sec) * 1000) +
 (interval.atEnd.ms - interval.atBegin.ms);

// Compute number of points that occurred during interval
nPoints = (nms * nSamplingRate) / 1000;

After recognition, an application can determine the time intervals at which recognized symbols were
written. Calling CreateInksetHRCRESULT creates the inkset for the required intervals:

HINKSET hinkset; // Allocate the inkset
HRCRESULT hresult; // Symbols for guesses go here

.

.

.
// Get symbols that make up the recognizer's best guess
GetResultsHRC(hrc, GRH_ALL, (LPHRCRESULT) &hresult, 1);

// Get the inkset for symbols 2 through 11 of the guess
hinkset = CreateInksetHRCRESULT(hresult, 2, 10);

The above code fragment creates an inkset containing a maximum of 10 intervals corresponding to the
second through eleventh symbols of the recognizer's best guess. The section "Unboxed Recognition" in
the next chapter describes the GetResultsHRC function in detail. For a description of the internal
workings of CreateInksetHRCRESULT, see "The Recognition Functions" in Chapter 8, "Writing a
Recognizer."

Timing Macros
The PENWIN.H file defines several macro functions designed to deal with timing information. The
following reference section briefly describes these macros.

dwDiffAT
dwDiffAT(at1, at2)

Compute time difference in milliseconds between two ABSTIME (absolute time) structures at1 and at2. If
at2 is more than at1, the result is positive.

Example
x = dwDiffAT(at1, at2); // Get time difference in milliseconds

dwDurInterval
dwDurInterval(lpi)

Calculate the duration in milliseconds of the INTERVAL structure lpi points to.

Example
x = dwDurInterval(lpi); // Get duration in milliseconds

FAbsTimeInInterval
FAbsTimeInInterval(at, lpi)

Test whether the time in the ABSTIME structure at is contained within the time interval in the INTERVAL
structure pointed to by lpi.

Example
if (FAbsTimeInInterval(at, lpi)) // TRUE if at within INTERVAL

FIntervalInInterval
FIntervalInInterval(lpiT, lpiS)

Test whether the time interval in the INTERVAL structure pointed to by lpiT is within the INTERVAL
structure pointed to by lpiS.

Example
if (FIntervalInterval(lpiT, lpiS)) // TRUE if lpiT within lpiS

FIntervalXInterval
FIntervalXInterval(lpiT, lpiS)

Test whether the time interval in the INTERVAL structure pointed to by lpiT overlaps the INTERVAL
structure pointed to by lpiS.

Example
if (FIntervalXInterval(lpiT, lpiS)) // TRUE if lpiT overlaps lpiS

FLTAbsTime FLTEAbsTime FEQAbsTime
FLTAbsTime(at1, at2)

FLTEAbsTime(at1, at2)

FEQAbsTime(at1, at2)

Compare two ABSTIME structures at1 and at2. These macros return TRUE for the following conditions:
less than, less than or equal, and equal.

Example
if (FLTAbsTime(at1, at2)) // TRUE if at1 < at2
if (FLTEAbsTime(at1, at2)) // TRUE if at1 <= at2
if (FEQAbsTime(at1, at2)) // TRUE if at1 == at2

MakeAbsTime
MakeAbsTime(lpat, sec, ms)

Initialize the ABSTIME structure pointed to by lpat with the values sec and ms.

Example
sec = 5; // Time = 5.4 seconds (5 seconds
ms = 400; // plus 400 milliseconds)
MakeAbsTime(lpat, sec, ms); // Fill ABSTIME structure

The Recognition Process
Recognition is the process of translating pen strokes into characters, symbols, or shapes. An application
conducts recognition by passing the raw pen data to special dynamic-link libraries (DLLs) called
recognizers, each of which may specialize in a particular data type. For example, one recognizer may
specialize in English text, another in Greek, and yet another in electronic symbols.

The system default recognizer serves the recognition needs of most applications. Alternatively,
applications can load additional recognizers and select which to use for any given input. Regardless of
the recognizer, the DoDefaultPenInput function can conveniently run the entire recognition process.

An application interfaces with recognizers through a data object called HRC, an abbreviation for "handle
to a recognition context." This chapter describes the HRC and explains how an application uses the HRC
functions to recognize pen-based handwriting.

The HRC Object
The HRC object incorporates a set of functions, called the HRC functions, that govern the recognition
process. To conduct handwriting recognition, an application creates an HRC object, configures its
recognition parameters, sends pen data to the object, gives the object time to perform recognition, and
eventually gets results from the object.

An HRC object provides four different functions, serving as:

· Recognition manager, containing the word lists, templates, alphabets, and GUIDE information that aid
recognition.

· Data storage, containing the pen coordinates placed into the object with the AddPenInputHRC or
AddPenDataHRC functions. An application can retrieve the entire set of pen data stored in the HRC
object or only a portion. For example, it can retrieve only the ink associated with a specific letter or
word in the recognized text.

· Recognition workhorse, handling the task of recognition through the ProcessHRC function.
· Results warehouse, storing recognition results and guesses.

Using the HRC Functions
The following sections describe how an application uses the HRC functions to recognize handwritten
input as the user writes. The text builds on the steps given in "Starting the Chain of Events" in Chapter
3, "The Writing Process;" refer to that section for more details on each step in the process. The following
sections deal with five separate areas of the recognition process:

· Creating the HRC
· Configuring the HRC
· Processing
· Getting results
· Destroying the HRC and other recognition objects

Creating the HRC
Before recognition can occur, the application must create an HRC object. DoDefaultPenInput does this
automatically for the system recognizer, or an application can call the CreateCompatibleHRC function to
specify another recognizer. CreateCompatibleHRC takes two arguments: a handle to an existing HRC (if
any) that serves as a template for the new HRC, and the handle to the recognizer that serves the new
HRC.

Either or both arguments can be NULL. Giving NULL as the first argument creates a new HRC with
default settings. The next section, "Configuring the HRC," describes the default parameters, which include
the following settings:

· Recognition ends after a brief period of inactivity or when the user taps outside the target window.
· The target window does not use guides.
· The recognizer returns only its best guess without alternative guesses.

Giving NULL as the second argument binds the HRC to the system default recognizer. Microsoft Windows
sets the supplied file GRECO.DLL as the system default recognizer, specified in the Microsoft Windows
95 system registry. Refer to Appendix A for an explanation of how to change the default to another
recognizer.

CreateCompatibleHRC, which is analogous to CreateCompatibleDC, copies configuration information
from an existing HRC to the new HRC, which the application can then modify. The following fragment
demonstrates how to load a fictitious recognizer called RECOG1.DLL and bind it to a new HRC patterned
after an existing HRC called hrcTemplate:

HRC hrc1; // Handle to new HRC
HREC hrec1; // Module handle of recognizer

.

.

.
hrec1 = InstallRecognizer("RECOG1.DLL");
if (hrec1)

hrc1 = CreateCompatibleHRC(hrcTemplate, hrec1);

Each HRC can access only one recognizer and the binding lasts the life of the HRC. To use multiple
recognizers, an application must create multiple HRC objects, binding each to a different recognizer. The
Pen API does not provide a means for changing the recognizer associated with an HRC.

As shown in the example above, an application must call InstallRecognizer to load any other recognizer
it will use. The exception is the system default recognizer, which is already installed when the system
starts up. An application should not install the system recognizer with InstallRecognizer. Doing so only
creates an unnecessary module handle.

To preserve system resources, an application must free all handles obtained from InstallRecognizer with
separate calls to UninstallRecognizer. Unlike other DLLs, a recognizer belongs to the system instead of
the application. Windows does not unload the recognizer from memory until every client has called
UninstallRecognizer.

Once it receives a valid HRC handle, the application can begin configuring the HRC to perform
handwriting recognition.

Configuring the HRC
Before passing data to the HRC, the application must ensure the HRC is properly configured to perform
recognition. The configuration information in an HRC provides a context to guide the recognition process.
For example, if the application expects only numerical input, it can configure the HRC accordingly. This
prevents the recognizer from mistakenly confusing the numeral "0" for the letter "O."

A new HRC shares the same configuration as the template HRC given when calling
CreateCompatibleHRC. If the application does not provide a template for CreateCompatibleHRC, the
new HRC receives a default configuration.

The following paragraphs describe the various configurations an application can set for an HRC object.

Alphabet
The SetAlphabetHRC function specifies a set of symbols the HRC should expect in the input. (A similar
function, SetBoxAlphabetHRC, provides the same service for a group of boxes when the HRC uses
guides.) For example, the application can constrain recognition to numerals and uppercase letters, as
shown here:

iRet = SetAlphabetHRC(hrc1, ALC_NUMERIC | ALC_UCALPHA, NULL);

For more details about SetAlphabetHRC and SetBoxAlphabetHRC, see Chapter 10, "Pen Application
Programming Interface Functions."

The first argument of SetAlphabetHRC is the HRC handle returned by CreateCompatibleHRC. The
second argument is a bitwise-OR value formed by the desired combination of ALC_ constants, some of
which are listed here:

Alphabet constant Description
ALC_DEFAULT Default alphabet value for recognizer. If

recognizer can serve as a system recognizer,
its default alphabet must include at least the
ALC_SYSMINIMUM set. The Pen API does not
specify a default for nonsystem recognizers.

ALC_LCALPHA Lowercase letters: a-z.
ALC_UCALPHA Uppercase letters: A-Z.
ALC_NUMERIC Numerals: 0-9.
ALC_ALPHANUMER
IC

Combines ALC_LCALPHA, ALC_UCALPHA,
and ALC_NUMERIC.

ALC_PUNC Punctuation: !-;`"?()&.,;\.
ALC_MATH Math symbols: %^*()-+={}<>,/.
ALC_MONETARY Monetary symbols: ,.$ (or as determined by

language).
ALC_OTHER Other special characters: @#|_~[].
ALC_ASCII Seven-bit characters ASCII #20 to ASCII #127.
ALC_WHITE White space such as tabs and newline and

space characters.
ALC_NONPRINT TAB, ENTER, and CTRL keys.
ALC_SYSMINIMUM Combines ALC_ALPHANUMERIC,

ALC_PUNC, ALC_WHITE, and
ALC_GESTURE.

If an application does not specify alphabet configuration either through an existing HRC model or by
calling SetAlphabetHRC or SetBoxAlphabetHRC, Windows assumes ALC_SYSMINIMUM as the
default alphabet configuration. For a complete list of ALC_ values, see Chapter 13, "Pen Application
Programming Interface Constants."

Gesture
A default HRC enables all gestures. An application can disable certain gestures by calling the
EnableGestureSetHRC function to change the gesture configuration for the HRC. The following example
disables the gestures for cut, copy, and paste while enabling all other gestures:

iRet = EnableGestureSetHRC(hrc1, GST_ALL ^ GST_CLIP, TRUE);

For more information about EnableGestureSetHRC, see the reference section in Chapter 10, "Pen
Application Programming Interface Functions."

The first argument of EnableGestureSetHRC is the HRC handle returned by CreateComptibleHRC. The
second argument is a bitwise-OR value formed by the desired combination of GST_ constants, listed
here:

Gesture constant Description
GST_CLIP Cut, copy, and paste.
GST_WHITE Space, tab, and newline.
GST_SEL Lasso selection.
GST_EDIT Insert, correct, and undo.
GST_SYS Combines all the above.
GST_CIRCLELO Lowercase circle gestures.
GST_CIRCLEUP Uppercase circle gestures.
GST_CIRCLE Combines GST_CIRCLELO and

GST_CIRCLEUP.
GST_ALL Combines all the above.

Word List
An application can select a word list from any number of lists to attach to an HRC. A word list, referenced
by a handle, consists of words the recognizer should consider when translating a handwritten word or
phrase. For example, Figure 5.1 shows a case in which the recognizer must decide between the valid
interpretations of "boy" and "looy".

{ewc msdncd, EWGraphic, bsd23552 0 /a "SDK_05.BMP"}

By consulting a word list that contains the entry "boy" but not "looy", the recognizer can select the first
choice with more confidence.

An application must call the CreateHWL function to create a word list. The function accepts a pointer to a
word list already in memory. Alternatively, an application can fill the word list from an existing file through
the ReadHWL function. The SetWordlistHRC function attaches the word list to a particular HRC, and
DestroyHWL returns the memory occupied by the list to the operating system.

The function SetWordlistCoercionHRC allows an application to establish the word list's influence over
the recognizer's interpretations. The function accepts the following values to set the degree of coercion:

Coercion value Description
SCH_ADVISE The recognizer should use the word list only

for hints; results are not strongly coerced to
match the word list. This is the default coercion
value.

SCH_FORCE If the recognizer does not find an exact match
in the word list, it should return the best fit. For
example, if the recognizer interprets a
handwritten word as "swoden," it will return
"Sweden," given a word list of country names.

SCH_NONE Cancels any coercion currently in effect.

The following code fragment illustrates all these steps by reading a list of country names from the fictitious
file COUNTRY.LST and attaching the list to the HRC identified by the handle hrc1. It calls
SetWordlistCoercionHRC to force the recognizer to return only names found in the COUNTRY.LST file.
The code assumes vhwl is a global variable, visible in all parts of the program.

HWL vhwl; // Handle to word list
HFILE hfile; // File handle
OFSTRUCT OFstruct; // Receives info about open
file
int iRet; // Return code

.

.

.
// In intialization procedure, open and read the word list
hfile = OpenFile("COUNTRY.LST", (LPOFSTRUCT) &OFstruct, OF_READ);
if (hfile != HFILE_ERROR)
{

vhwl = CreateHWL(hrec1, NULL, WLT_EMPTY); // Create empty list
iRet = ReadHWL(vhwl, hfile); // Read list from

file
}

.

.

.
// After creating hrc1, attach word list vhwl to it
SetWordlistHRC(hrc1, vhwl); // Attach list to hrc1
SetWordlistCoercionHRC(hrc1, SCH_FORCE); // Establish coercion

.

.

.
//Before terminating, destroy word list
DestroyHWL(vhwl);

Note that an application must first set the word list with SetWordlistHRC before calling
SetWordlistCoercionHRC.

Guide
Guides are visual cues such as lines or boxes in a bedit control. Guide configuration informs the
recognizer of the types and locations of guides displayed for the user. With this information, the
recognizer can confidently determine which pen strokes constitute a single character or shape. For an
illustration of box guides, see the "The bedit Control" section in Chapter 3, "The Writing Process."

To establish guide configuration, an application calls the SetGuideHRC function, providing a pointer to a
GUIDE structure:

GUIDE guide;
.
.
.

iRet = SetGuideHRC(hrc1, (LPGUIDE) &guide, 0);

Number of Recognition Guesses
The application can specify the maximum number of guesses the recognizer should provide in its results.
This allows the application to prevent the recognizer from generating more alternative guesses than
required.

Set the maximum number of guesses with the SetMaxResultsHRC function. The following example code
tells the recognizer to provide its five best guesses:

iRet = SetMaxResultsHRC(hrc1, 5);

The default number of maximum recognition results is 1.

Processing
Once the HRC object has been properly created and configured, it can take on its role of recognition
agent. To fulfill this role, the HRC requires:

· The data generated by the pen movement.
· Sufficient central processing unit (CPU) time to execute the recognition algorithms and generate

results.

The following sections describe how an application supplies these two requirements to the HRC object.

Adding Data to an HRC Object
An application provides pen data to the HRC through one of two API functions: AddPenInputHRC or
AddPenDataHRC.

AddPenInputHRC operates at intervals as pen data is collected, in the same manner as GetPenInput.
An application must call AddPenInputHRC only after it has called GetPenInput. AddPenInputHRC
provides the pen coordinates and original equipment manufacturer (OEM) data to the recognizer bound to
the HRC object.

AddPenDataHRC also provides pen data to the recognizer, but is designed to operate after all the data is
collected. An application can thus collect pen data without realtime recognition, store the data in an
HPENDATA structure, and call AddPenDataHRC to recognize the data any time thereafter.

Allocating Processing Time
After it has supplied the raw pen data to an HRC object, the application then allocates processing time for
recognition by calling ProcessHRC. To accommodate applications with time-critical communications
requirements or other CPU-intensive activities, ProcessHRC takes a time-out value (in milliseconds) as
its second argument. If the time-out period elapses before ProcessHRC finishes processing, the function
returns an HRCR_INCOMPLETE value. In this way, an application can repeatedly allocate small slices of
time until the recognizer finishes its work.

PENWIN.H defines three time-out codes that an application can use when calling ProcessHRC. The
following table describes the time-out codes.

Time-out code Description
PH_MIN Allocates the smallest possible period of time

to the recognizer, approximately 50
milliseconds.

PH_DEFAULT Allocates a moderate amount of time to the
recognizer, approximately 200 milliseconds.

PH_MAX Grants the recognizer as much time as it
requires to complete the recognition.

The following line allocates the default time-out period to the recognizer in the HRC identified by the
handle hrc1:

iRet = ProcessHRC(hrc1, PH_DEFAULT);

Typically, AddPenInputHRC and ProcessHRC work together in a loop or in repeated response to a PE_
message as the user writes. One function continually retrieves the latest pen data while the other
processes that data. When the input session terminates, an application should call ProcessHRC with
PH_MAX to finalize the recognition.

See the reference section for ProcessHRC in Chapter 10 for additional information about this function.
When ProcessHRC returns, the application can retrieve results from the HRC object, as described in the
next section.

Getting Results
The Pen API provides three methods for an application to get recognition results. The first two methods
are functions ¾ GetBoxResultsHRC and GetResultsHRC ¾ that retrieve the results from an HRC
object. The GetBoxResultsHRC function assumes the application has provided a GUIDE structure to the
HRC. If the application has not specified a GUIDE structure, it must call GetResultsHRC to retrieve an
HRCRESULT object for each alternative guess.

The third method applies only to version 1.0 recognition functions. It retrieves recognition results for both
boxed and unboxed input from an RCRESULT structure. With this method, an application must dissect
the RCRESULT structure to get information that GetBoxResultsHRC and GetResultsHRC provide
automatically.

The rest of this section gives examples for each of the three methods.

Boxed Recognition
GetBoxResultsHRC retrieves boxed recognition results on a box-by-box basis. The function fills an array
of BOXRESULTS structures with the results and alternatives for a set of boxed character positions in the
recognized text. Each of the BOXRESULTS structure in the array contains one or more recognition
guesses for a single box.

For example, consider the case in which the user has written a seven-letter word before requesting
recognition ¾ say, by tapping an OK button. The application can retrieve results individually for each box
by calling GetBoxResultsHRC in a loop, or provide an array of at least seven BOXRESULTS structures
and receive all seven recognition results with a single call to GetBoxResultsHRC.

The following example code retrieves recognition results two boxes at a time. It requests only the first
alternative for each box, which represents the recognizer's best guess about the character in the box:

#define NBOX 2 // Number of boxes to get
#define NALT 1 // Only one alternative per
box

BOXRESULTS box[NBOX]; // Array of BOXRESULTS structures
UINT iSyv = 0; // Index of symbol values
int cBox; // Number of results returned

.

.

.
do {

cBox = GetBoxResultsHRC(hrc1, NALT, iSyv, NBOX,
 (LPBOXRESULTS)&box, FALSE);

. // Do error
checking

. // Read
results from

. // box[]
array

iSyv += (UINT) cBox; // Increment
index
} while (cBox == NBOX) // Loop for next boxes

By requesting only a single alternative for a small number of boxes, the preceding example can allocate
the array on the stack. However, the BOXRESULTS structure contains a variable-length array of type
SYV for additional alternative characters. For a value of NALT greater than 1, the application must allocate
extra space for the alternatives in each BOXRESULTS, as the following line demonstrates:

HGLOBAL hMem = GlobalAlloc(GHND,
 NBOX*(sizeof(BOXRESULTS) + (NALT-

1)*sizeof(SYV)));

The example provided in the GetBoxResultsHRC reference section in Chapter 10 further illustrates how
to use this function.

When GetBoxResultsHRC returns, the application can walk the BOXRESULTS array and display the
information appropriately. The boxed edit control described in the "The bedit Control" section in Chapter 3
uses GetBoxResultsHRC to perform recognition and to generate alternative results.

Boxed writing does not constrain an application to call GetBoxResultsHRC for recognition results. An
application can also call GetResultsHRC, described next, even if the HRC is configured for box guides.

Unboxed Recognition
For recognition of unboxed handwriting ¾ that is, writing without visual guides as specified by a GUIDE
structure, an application must call the GetResultsHRC function. This function fills an array of
HRCRESULT objects, each containing a separate guess by the recognizer. The number of HRCRESULT
objects in the array is always less than or equal to the maximum number of guesses requested through
the SetMaxResultsHRC function.

An example will clarify this. Assume an application contains the following instructions:

#define MAX_GUESS 5 // Maximum number of guesses
allowed

.

.

.
SetMaxResultsHRC(hrc1, MAX_GUESS);

The user next writes a word that the recognizer associated with hrc1 guesses to be, in descending order
of probability, either "clear," "dear," "clean," "dean," or "deer." Though it might have generated even more
guesses, the recognizer is constrained to stop after its fifth guess by the earlier call to
SetMaxResultsHRC. In this case, a subsequent call to GetResultsHRC fills an array of up to five
HRCRESULT objects, the first HRCRESULT containing the word "clear," the second the word "dear," and
so forth.

An HRCRESULT object does not contain a normal ASCII string representation of a guess. This is not
possible since a guess might be made up of a gesture, shape, or other entity that has no ASCII
equivalent. Instead, an HRCRESULT contains a string of symbol values, which are 32-bit numbers type-
defined as SYV.

Symbol values can represent geometric shapes, gestures, letters of the alphabet, Japanese Kanji
characters, musical notes, electronic symbols, or any other symbols defined by the recognizer. The Pen
API provides the function SymbolToCharacter to convert the null-terminated symbol string in
HRCRESULT to an ASCII string.

The following code continues the example above, illustrating how to retrieve and display the five guesses
returned by the recognizer:

#define MAX_GUESS 5 // Maximum number of guesses allowed
#define MAX_CHAR 50 // Maximum number of characters in
 // a single guess
HRCRESULT result[MAX_GUESS]; // Array for recognition result objects
int cGuess;

.

.

.
SetMaxResultsHRC(hrc1, MAX_GUESS);

.

.

.
//
// Get all (non-gesture) guesses available, and if no errors,
// convert to ASCII strings and display them. Note in our
// example the following call returns the value 5 to cGuess.
//
cGuess = GetResultsHRC(hrc1, GRH_NONGESTURE,
 (LPHRCRESULT) &result, MAX_GUESS);

if (cGuess > 0)
{

int i, cSyv, cChar;
char szText[MAX_CHAR]; // Buffer for converted text
SYV rgSyv[MAX_CHAR]; // Buffer for symbol string

//
// Loop cGuess (5) times, retrieving each time a symbol string
// representing a different guess. Convert the symbol string
// to a normal ASCII string and display it.
//
// In our example, the five iterations of this loop display the
// words "clear," "dear," "clean," "dean," and "deer."
//
for (i = 0; i < cGuess; i++)
{

cSyv = GetSymbolsHRCRESULT(result[i], 0, rgSyv, MAX_CHAR);
if (cSyv > 0)
{

 SymbolToCharacter((LPSYV) rgSyv, cSyv,
 (LPSTR) szText, (LPINT) &cChar);

.

. // After
converting to ASCII

. // string,
display text
 TextOut(hdc, nX, nY, (LPSTR) szText, cChar);

.

.

.
}

 DestroyHRCRESULT(result[i]); // When finished with results,
 result[i] = NULL; // destroy HRCRESULT objects

}
}

For another example of how to use the GetResultsHRC function, see "Step 9: PE_RESULT Message" in
Chapter 2. If an application must retrieve an unknown number of symbol values from the recognizer, it
should follow these three steps:

1. Call GetSymbolCountHRCRESULT to determine the number of symbol values the recognizer can
return.

2. Allocate a sufficient buffer for the values.
3. Call GetSymbolsHRCRESULT. to copy the symbol values to the buffer.

Getting Results from the RCRESULT Structure

Note The RCRESULT structure is supported only for backward compatibility. It may not exist in
future versions of the Pen API. Applications should obtain recognition results through the API
functions described in this chapter, rather than from an RCRESULT structure.

The RCRESULT structure applies only when an application calls either of the version 1.0 recognition
functions, Recognize or RecognizeData. In this case, the system sends a WM_RCRESULT message to
the application. The wParam of this message contains a REC_ submessage that indicates why
recognition ended. The lParam of WM_RCRESULT points to an RCRESULT structure, which contains all
the results of the recognition.

An application can retrieve from the RCRESULT structure all the recognizer's guesses by walking through
the list, called the symbol graph, contained in the RCRESULT structure.

The RCRESULT structure identifies the recognizer's "best guess," which is the guess in which the
recognizer places the most confidence. With this information, an application can conveniently retrieve an
ASCII string of the best guess by calling SymbolToCharacter:

char szBestGuess[MAX_CHAR]; // ASCII string of best guess
.
.
.

switch (wMsg)
{

case WM_RCRESULT:
SymbolToCharacter(

(LPSYV) ((LPRCRESULT)lparam)->lpsyv, // Symbol
string

MAX_CHAR, //
Maximum length

(LPSTR) szBestGuess, //
Buffer for ASCII

NULL);
// Don't need count

Compare the above call to SymbolToCharacter with the previous example. Here, the second argument
represents a maximum, rather than the actual length of the symbol string, which is the value

(int) ((LPRCRESULT)lparam)->cSyv

By specifying the length of the buffer that receives the ASCII text, the second argument sets a cap on the
number of symbols SymbolToCharacter will convert. This prevents the function from overflowing the
szBestGuess buffer if the length of the symbol string happens to be larger than MAX_CHAR.
SymbolToCharacter returns when it encounters SYV_NULL at the end of the symbol string or when it
converts MAX_CHAR symbols, whichever occurs first.

An application that calls Recognize or RecognizeData must be prepared to receive WM_RCRESULT
messages before calling either function. This is because the recognizer dispatches all WM_RCRESULT
messages associated with a particular recognition event before Recognize or RecognizeData returns.

Version 2.0 of the Pen API provides, through function calls, all the information contained in an
RCRESULT structure. An application need not examine the structure at all. RCRESULT is a product of
recognition, and is therefore of more interest to the recognizer developer than the application developer.

Consequently, it is described in more detail in Chapter 8, "Writing a Recognizer."

Destroying the HRC
The useful life of an HRC object usually expires when the recognizer returns results at the end of an input
session. The next input session requires the creation of a new HRC. When finished with an HRC object,
an application should destroy the object in two steps:

1. Call DestroyHRC to free the occupied memory.
2. Set the HRC handle to NULL.

For example:

HRC vhrc = NULL; // Set to NULL until
HRC is created

.

. // Create and use the
HRC

.
DestroyHRC(vhrc); // Destroy the HRC when

finished
vhrc = NULL; // Handle is now

invalid

When DestroyHRC returns, the handle value remains unchanged though no longer valid. The second
step above prevents frustrating bugs arising from the inadvertent use of an invalid HRC handle.

This same advice applies to the other recognition objects, HRCRESULT and HWL. After calling
DestroyHRCRESULT or DestroyHWL, always set the invalid handle to NULL.

Design Considerations
The developer of pen-based applications should bear in mind the unusual qualities of a pen interface.
Input through a pen device provides unique advantages, yet at the same time carries severe limitations.
The best applications will seek to profit from one quality while minimizing the effects of the other.

This chapter discusses some of the characteristics of an intelligent and responsive pen-based application.
It offers tips, ideas, and a few warnings. The advice is based on experience and the results of usability
studies conducted by Microsoft.

Basic Principles
Consider the following basic principles when designing the user interface of a pen-based application.
Though not intended to constrain the developer's creativity, these principles can help ensure that the
resulting application appeals to its users.

· Keep it simple.
· Use familiar models.
· Show feedback for user.
· Make it fast.
· Make it fun.
· Make exploration safe.
· Let the user maintain control.

The following sections explore each of these guidelines.

Keep It Simple
The developer should value simplicity over power when designing a pen-based application. Simplicity is
not only a characteristic of good interface design, it hastens the user's acceptance of a type of input
paradigm apt to be new and unfamiliar.

The same principles for writing a standard Windows-based application apply equally to pen-based
programs:

· Limit features and options to reduce the number of choices a user must make. When adapting an
existing application to run on a pen-based computer, remember the so-called "80/20" rule: 80 percent
of an application's value is typically provided by only 20 percent of its features.

· Keep the interface clear, consistent, uncomplicated, and predictable. The relationship between what a
user does and how the application responds should be logical and consistent. Keeping the interface
consistent and predictable reduces the amount of information the user must remember in order to use
an application.

· Make possible actions and results visible to the user. Enable the user to work directly with objects
without resorting to abstractions. The user wants to "send mail" or "find a note," not "open an
application" or "search for data."

· Use constraints to prevent the user from choosing inappropriate actions and provide default choices
whenever appropriate. Constraints encourage the user to make appropriate decisions by limiting
unlikely choices. For example, a button enabling a user to save or pause a game should not be visible
until play has started.

Use Familiar Models
Familiar conceptual models are powerful aids in user-interface design. A conceptual model enables users
to apply knowledge gained from experience toward understanding the structure and use of the
application. For example, an Address application modeled after a typical paper-based address book
would allow users to apply their understanding of address books to the new application.

Use Feedback
The user should receive immediate and tangible feedback during interaction with an application.
Appropriate feedback includes acknowledging a request, pointing out an error, or tracking the progress of
an operation. Although auditory feedback can be useful for attracting a user's attention, it should be used
sparingly in a pen-based application for the following reasons:

· Many users find beeps annoying.
· Pen-based computers will be used more and more frequently in conference rooms and other group

areas where beeping from a machine will not be welcome.
· Auditory messages disappear without a trace. If the user is momentarily away or distracted, the

auditory signal has failed to do its job.
· If the user can turn the warning sound off, sound is not a reliable source of feedback.
· An audible notification is not useful for users who are deaf or hard of hearing.

Make It Fast
A simple and responsive interface is more appealing than an attractive yet sluggish interface. An
application should always be ready for user input and prepared to offer immediate feedback. Ideally,
results should quickly follow the user's actions.

Where immediate results are not possible, run lengthy operations in separate threads if practical. This
technique has the advantage of at least simulating speed by returning control quickly to the user.

Make It Fun
Users will look for applications that have simple, creative interfaces that are fun to use when deciding
what to keep on their portable pen-based machines. Paying special attention to the visual appeal of an
interface pays off in gaining user acceptance. The most powerful interfaces are those that combine
aesthetics with functionality.

Make Exploration Safe
People like to explore applications and learn by trial and error. Such selfmotivated learning is extremely
effective, but users might not always be aware of potential dangers. Even with the best-designed
interface, users make mistakes ¾ such as accidentally tapping the wrong object or data, or making a
wrong decision about which data to select. The interface should accommodate user exploration by:

· Softening any penalty caused by mistake.
· Minimizing the opportunities for errors.
· Handling user errors gracefully, without implying the user is at fault.
· Allowing easy undo and undelete.
· Keeping separate training databases to accommodate guest users.

Let the User Maintain Control
People want to feel in control of an application. A well-designed, responsive user interface contributes
much toward the user's perception of being in control. The following list gives design suggestions for
achieving this:

· Enable the user to interrupt long operations.
· Discard meaningless user input during long operations. While waiting, users might randomly tap on

the pen tablet or display. To dispose of spurious input in a discreet manner, enable your application to
distinguish between meaningful and unintentional data.

· Allow the user to specify desired default settings.

Recognition: Use and Misuse
Recognition is often the deciding factor in how people react to pen-based computing. It is, unfortunately,
an inexact science and always will be. The best applications will seek to minimize the potential for error
introduced by recognition by restricting as much as possible the amount of recognition necessary. The
following may give you some ideas.

Selecting Is Better Than Writing
As much as possible, let the user select rather than write. For example, take advantage of spin-box and
list-box controls that don't require written input. When prompting for a date, present the user with a simple
calendar on which he or she can pick a date by tapping with the pen.

Keep track of previous entries and allow the user to select one from a list rather than having to rewrite it.
For example, when prompting for a name, consider using a combo-box control to provide access to a list
of the previous 10 or so names the user has last entered. This confines the potential for recognition errors
to the first time the name is written.

When prompting for a filename, provide an option for browsing through directory lists, allowing the user to
select a file and path by tapping the filename with the pen.

bedit Is Better Than hedit
People prefer to write in the relatively unrestricted space of an hedit control, but the bedit control offers
better recognition accuracy. The comb and box guides of a bedit also serve as discreet prompts,
informing the user that the application awaits written input.

If saving screen space is important, consider using a lens instead of a bedit. Always create a single-line
edit control with ES_AUTOHSCROLL so it shows a lens button.

Real Time Is Better Than Deferred Time
Deferred recognition offers the seductive advantages of speed and instantaneous response. By collecting
ink without pausing to recognize it, an application can easily keep up with rapid pen movements. The
input can be recognized later when requested by the user, or perhaps during periods of user inactivity.

However, Microsoft tests have demonstrated that the accuracy of deferred recognition often compares
unfavorably to real-time recognition. This has nothing to do with the recognizers, since they apply the
same processing procedures to the data regardless of when the ink is collected. The discrepancy arises
from the fact that people tend to write more carelessly if not continually informed about the recognizer's
success rate.

By seeing the recognition results as they write, users naturally adapt their writing speed and style to
assure the greatest recognition accuracy. Although in theory the user should train the recognizer, to a
certain extent the reverse undeniably occurs.

Make Corrections Easy
Users don't mind recognition errors as much as they mind the effort required to correct the errors. A good
pen model focuses on making corrections as easy and fast as possible.

An error in recognition should never have unpleasant consequences. For example, misrecognizing an
undo gesture wastes the user's time. When in doubt, prompt for confirmation and make confirmation easy
¾ say, with an extra-large OK button. The extra step will annoy the user less than having to recover from
the error.

Provide Easy Access to the On-screen Keyboard
The on-screen keyboard serves well for short input, especially for correcting erroneous recognition
results. An application should ensure that the on-screen keyboard is easily accessible to the user, yet
remains unobtrusive. Microsoft usability studies have shown that users prefer writing to tapping on the on-
screen keyboard, even though the latter is often faster because it avoids recognition errors. Consider
making the on-screen keyboard more or less noticeable depending on whether your application runs on a
desktop system with a real keyboard or on a handheld unit with no physical keyboard.

Other Considerations
The developer of pen-based applications should consider other facets of pen computing besides
recognition. This section lists a few ideas.

Don't Rely on Gestures
In a well-designed pen application, all operations are possible without gestures. The application may
support gestures as shortcuts, but should not sacrifice common operations for the sake of the gesture.

Gestures also tend to remain a hidden (or "nondiscoverable") functionality, which the novice user often
does not guess at. Gestures should facilitate the experienced user without hampering the uninitiated.

Action handles provide the same benefits as gestures. Moreover, they are more discoverable and reliable,
since they do not require recognition.

Every pen application should, at minimum, support the cut and lasso gestures. Anything else is at the
discretion of the developer. Incidentally, usability tests have found that a common gesture among novice
users is to scribble over an entry to erase or undo it. An intelligent application should respond to such
unknown gestures and display a polite inquiry, listing possible alternative actions that the user can select
by tapping.

Provide Ample Target Space
The pen often proves an inaccurate pointing device. The well-behaved pen application allows ample
margin for pointing errors from the user, who can easily miss a small button or other target. Consider the
following suggestions to make your pen-based application friendly to the user with poor aim:

· Create targets as large as practical.
· Space toolbar buttons so that they have gaps between them.
· Avoid crowding dialog boxes with controls placed near one another.
· Pen-down events falling within a few pixels of a button should be treated as a press of that button.

Always increase the effective size of a control by sending the HE_SETINFLATE submessage, as
described in the "HE_SETINFLATE Submessage" section in Chapter 3, "The Writing Process."

· Compensate for the pixel sizes of different displays. Use GetDeviceCaps to determine sizes and
maintain uniform dimensions for on-screen targets.

Use Position Clues
A pen-based application should consider position clues in determining the user's intentions. The following
offers a few examples of inferring the user's desires from the position of the ink:

· A gesture drawn over part of a selection should operate on the entire selection. In the same vein, a
gesture or lasso that intersects more than a single letter of a word is probably meant for the entire
word.

· Writing text on a line below existing text serves as a good indication the user intends the new text to
go on a new line. In this case, an application can insert a newline character automatically.

· Text written over an insertion point should be inserted at the insertion point.

Conserve Power
A pen-based environment will often be found on small notebook- or handheld-size computers. Users will
appreciate pen-based applications that extend battery life by conserving power. Here are a few power-
saving tips:

· Avoid "disk hits" as much as possible. Hard disks on small systems often turn off after a period of
inactivity and powering them up again significantly affects battery life. An application should avoid
unnecessarily accessing the disk, since doing so may force the system to repower the drive.

· Keep code and data files small to minimize the disk swapping Windows must do to clear memory.
Restrict the number of dynamic-link library (DLL) files your application requires and consider loading
the DLLs early. In this way, Windows reads the DLL files immediately after having loaded the
application itself, while the disk is still in motion. Linking to a DLL's import library ensures that the DLL
is installed at the same time as the application.
However, this advice applies only to small DLL files and DLLs that the application will most likely use
at some point. Large DLL files that stand a good chance of not being required by the application
should be loaded explicitly only when needed by calling the InstallRecognizer function or the
LoadLibrary function. Although this risks powering up a dormant disk drive, it also prevents
unneeded objects from occupying memory.

· Prefer visual to auditory signals. Besides the negative reasons cited in the "Use Feedback" section,
beeps from the speaker also waste battery power.

· Reduce video power drain by making background colors black.

Guidelines for Applications
The following presents some recommended approaches for different types of applications, based on the
guidelines presented above. While by no means exhaustive, the material may give you some ideas for
various types of applications.

Annotation
Many different types of software can benefit from the unique advantages of pen-based annotation. A user
annotates by writing with a pen on top of an existing document, as though on an overlaying transparent
sheet. This allows adding to the document free-form writing such as notes, diagrams, review comments,
questions, and so forth.

Unless evident by the context, an application should prompt the user to identify a position in the document
to attach the annotation. This prevents the annotation from drifting from its intended location if the
underlying document is changed.

Often, annotated text remains unrecognized, captured as ink data. Reduce such text to display resolution
to minimize the file space it occupies. For more information on how to achieve maximum compression of
handwritten text, see "Converting Data to Display Resolution" in Chapter 4.

Word Processor
Although the pen does not serve well to create a word-processor document, it can do so for small editing
tasks on existing documents, such as for cut-and-paste operations, formatting changes, rewriting small
amounts of text, and navigation (scrolling). Thus, the pen in a word-processing application should behave
as a pointing device most of the time. The user should be able to select text by dragging the pen and the
selection should include an action handle. Double-tapping should display a writing window, as should an
"edit" command on a selection action handle. Consider also providing an insertion-point action handle,
including an "insert text" command.

When the user creates a new blank document, the application should automatically display an editing
window because the user clearly intends to enter new text. For existing documents, the application should
provide a means for annotating the text, either by inserting scribble notes (like Post-it™ notes) or by inking
directly on top of the text.

Spreadsheet
Within the spreadsheet area, the pen should default to a pointer. If the application allows in-cell editing,
double-tapping the cell should open a writing window in which the user can write or edit the contents of
the cell. This window should include a palette of commonly entered symbols such as "*" or formula names
that are hard to recognize. This allows the user to enter an unambiguous symbol by tapping an
appropriate button.

A formula bar area should behave more like the word-processor application just described. If the area is
empty, the application should display the writing window automatically. Naturally, the recognizer should be
configured according to the type of input expected, whether text, numerical, or whatever.

Annotation, including quick notes and diagrams, represents an ideal usage of a pen in a spreadsheet
application. Often, annotated text can be kept as ink and does not require recognition. Anchoring and
targeting annotations on a spreadsheet is somewhat easier than on a word-processing document
because cells do not flow in the same manner as text. Annotations should be anchored to the data and
not the cell. This ensures that, if the data moves to another cell, the annotation moves with it.

Because spreadsheets contain much data that is not based on words, on-screen keyboards should be
easy to display (and automatic in many circumstances). As with word-processing applications, writing in a
spreadsheet will most likely be limited to small editing and format changes.

The user will often wish to edit the contents of a single cell to see how it affects the rest of the
spreadsheet. To facilitate this operation with a pen, the application should anticipate as much as possible.
For example, double-tapping a field containing a numeric value should display a numeric on-screen
keypad.

If the spreadsheet offers text entry with recognition, it should provide an appropriate tool accessible from
a toolbar or menu. When the user selects text-entry mode, the spreadsheet should enlarge (zoom),
allowing the user to write comfortably within a cell. The application can rely on the automatic targeting
capabilities provided by the Pen application programming interface (API), described in Chapter 2, to route
text appropriately to different cells.

Mail
Perhaps the most common operations in electronic mail with a pen are navigation, annotation, responding
to and forwarding mail, and composition of short notes.

When the user selects "new" to create a new blank message or presses a "reply" or "forward" button, the
application should automatically display a writing window in which the user can enter new text. In the case
of the reply and forward operations, the writing window should include the text of the original message.
The user may wish to selectively edit or delete parts of the original message when replying or forwarding.
The application should provide action handles for this.

Forms
Pen computers are ideal for filling out electronic forms. Forms applications can achieve superior
handwriting recognition for several reasons:

· The bedit control with its built-in guides serves perfectly in many if not all the writing sections of a
form.

· Because each writing window of an electronic form often expects input of a certain type, the forms
application can constrain recognition to that type. For example, an application can restrict recognition
to numerals for a control window that expects a telephone number.

· Through the use of word lists such as local street names or regional cities, a recognizer can greatly
improve accuracy for certain input sections of the form.

Forms usually appear blank or nearly blank by default, so the most common operation in a forms
application is adding text. The system's automatic targeting routes input to the proper control window
without intervention by the application.

A writing window should appear automatically on the appropriate field if recognized text produces
questionable results. Double-tapping should display a writing window, and the application should provide
a lens (writing window) and on-screen keyboard accelerator buttons. It should also provide insertion-point
action handles for selection.

Shell
The most common shell operations involve selecting files, opening files or running programs, dragging
filenames to copy or move files, and deleting files. A pointer-based interface serves all such operations
well. Therefore, the pen should behave as a pointer in the shell. Tapping or dragging a rectangular
marquee should select files, double-tapping should open files, and dragging should copy or move files.
The shell can provide deletion services on selected files either through a "delete" option in a menu or by
handling a cut gesture.

A Sample Pen Application
This chapter describes a simple pen-based application called PENAPP that demonstrates some of the
programming techniques covered in the previous chapters. The source code in this chapter is
fragmentary, illustrating only the most interesting parts of the application. For the complete source listing,
see the file PENAPP.C in the Microsoft Win32 Software Development Kit, in the SAMPLES\PEN\PENAPP
directory.

PENAPP uses the sample recognizer SREC, described in the next chapter, "Writing a Recognizer." The
source files for SREC also reside in the SAMPLES directory. To see PENAPP in action, you must first
build both PENAPP.EXE and SREC.DLL using the supplied makefiles. Place the SREC.DLL file in your
Windows directory or in a directory on the PATH list before running PENAPP.

The SAMPLES\PEN directory also provides source code for other sample pen-based applications. All
code is commented, demonstrating different approaches to different issues.

Overview of PENAPP
PENAPP is a standard pen-based application with the familiar Windows look. It displays a main window
with a border, an application menu, and Minimize and Maximize buttons. It also has three child windows
titled Input, Info, and Raw Data.

In operation, PENAPP accepts pen input through the Input child window. Depending on the menu option,
PENAPP sends the input to the system recognizer or the sample custom recognizer SREC, or collects
the data into an HPENDATA object to create a mirror image of the ink.

The output from the recognizers is displayed through the Raw Data and Info child windows. The Raw
Data child window redisplays the raw input data, sized for the smaller window. The Info child window
displays one of the following, depending on the current menu selection:

· If the selected recognizer is the system recognizer, the Info child window displays the recognized
ANSI text.

· If the selected recognizer is the sample custom recognizer, the Info child window displays an arrow
indicating the compass direction of the input stroke. If the pen rests on the tablet surface without
moving, the Info window displays a single dot.

· If the Mirror option is selected, the Info window displays a mirror image of the drawing.

In this chapter, PENAPP function and variable names appear in monospace font, including the
application's entry function, WinMain. In keeping with the conventions of the rest of the book, API
elements are styled bold.

Initialization
The PENAPP function WinMain is a standard Windows entry function. PENAPP uses initialization
functions, called InitApp and InitInstance, to create windows and initialize data. To an experienced
programmer in Windows, the WinMain and initialization functions will look very familiar.

WinMain
The WinMain function performs the same tasks as a regular Windows function:

· It calls the initialization functions to register window classes and create windows.
· It enters a message loop to process messages from the application queue.
· The message loop ends when the user chooses Exit from the menu, generating a WM_DESTROY

message, which in turn posts a WM_QUIT message to WinMain. When the GetMessage function
detects the WM_QUIT message, it returns NULL to end the loop.

The WinMain function calls GetSystemMetrics to check whether pen services are installed. If they are
not found, the application should either exit with an explanatory message or alter its behavior to run
without pen input.

Note that Microsoft pen services must be installed when Windows starts. Simply linking PENWIN.DLL and
loading it at runtime is not sufficient to initialize pen services. For this reason, unless it is known that the
application being developed will always be run on a system with pen services installed, pen API should
be called through function pointers. This mechanism insures that a pen-aware application can run only on
a system on which pen services has been properly installed and will not run on any system that merely
has PENWIN.DLL on the path. See the HFORM sample application for an example of this technique.

For the sake of simplicity and readability, the PENAPP application described in this chapter links directly
to PENWIN.DLL and does not use function pointers.

int PASCAL WinMain(
HANDLE hInstance, // Instance handle
HANDLE hPrevInstance, // Previous instance handle
LPSTR lpszCommandLine, // Command line string
int cmdShow) // ShowWindow flag

{

MSG msg;

// Mention to prevent compiler warnings
lpszCommandLine;

if (!hPrevInstance) // If first instance,

if (!InitApp(hInstance)) // register window class
return FALSE; // Exit if can't

register

if (!InitInstance(hInstance, nCmdShow))

// Create this
instance's window

return FALSE; // Exit if error

if (!GetSystemMetrics(SM_PENWINDOWS)) // If no pen services

return FALSE; // exit

while (GetMessage((LPMSG) &msg, NULL, 0, 0))
{

TranslateMessage((LPMSG) &msg);

DispatchMessage((LPMSG) &msg);
}

return 0; // Success

}

The InitApp function initializes data and registers the window classes. Following standard programming
practice for Windows, the function returns FALSE if it cannot register the window classes.

For the Input window, InitApp specifies a cursor type of IDC_PEN. This is the default cursor type supplied
by the pen-aware display driver. For more information on pen types, see the reference section for the
IDC_ constants in Chapter 13, "Pen Application Programming Interface Constants."

The following fragment shows how InitApp creates the Input window:

BOOL InitApp(HANDLE hInstance) // Instance handle
{

WNDCLASS wc;
.
.
.

//
// Register PenApp child window classes
//
wc.hCursor = LoadCursor(NULL, IDC_PEN);
wc.hIcon = NULL;
wc.lpszMenuName = NULL;
wc.lpszClassName = (LPSTR) szPenAppInputClass;
wc.hbrBackground = (HBRUSH) (COLOR_WINDOW + 1);
wc.style = CS_VREDRAW | CS_HREDRAW | CS_SAVEBITS;
wc.lpfnWndProc = InputWndProc;
if (!RegisterClass((LPWNDCLASS) &wc))

return FALSE;
.
.
.

}

InitInstance
The InitInstance function initializes all data structures for the program instance and creates the
necessary windows. InitInstance looks like a standard Windows initialization function except that it calls
the InstallRecognizer function to load the default recognizer SREC. Windows loads the default
recognizer automatically, so a program should call InstallRecognizer to load only recognizers other than
the default recognizer.

The following fragment taken from the InitInstance function shows how the program loads the SREC
recognizer:

BOOL InitInstance(
HANDLE hInstance, // Instance handle
int cmdShow) // ShowWindow flag

{
.
.
.

//
// Load sample recognizer SREC
//
vhrec = InstallRecognizer((LPSTR) szSampleRec);
if (vhrec)

return TRUE;
else
{
 MessageBox(vhwndMain, "Could not install recognizer SREC",

 szPenAppWnd, MB_OK | MB_ICONSTOP);
 return FALSE;
}

}

Window Procedures
PENAPP provides a separate procedure to handle messages for each of its four windows. In accordance
with usual programming techniques for Windows, each window procedure passes all unprocessed
messages to DefWindowProc for default processing.

The following sections describe the procedures for the Main, Input, Raw, and Info windows.

MainWndProc
As its name implies, the MainWndProc function handles messages sent to the program's parent (main)
window. These messages signal that the user has made a menu selection, resized the window, or
changed the pen system through Control Panel. These actions generate, respectively, the following
messages:

· WM_COMMAND message. If the user selects a command from the Options menu, the program notes
the selection in the global flag viMenuSel. The state of this flag determines whether subsequent input
goes to the system recognizer or the sample recognizer SREC, or is collected into an HPENDATA
object for conversion to a mirror image.

· WM_SIZE message. PENAPP resizes its windows according to the information in the lParam
variable.

· WM_PENMISCINFO message. The procedure allows this message to fall through to
DefWindowProc for default handling.

LRESULT CALLBACK MainWndProc(
HWND hwnd, //

Window handle
UINT message, //

Message
WPARAM wParam, //

Varies
LPARAM lParam) //

Varies
{

LONG lRet = 0L;
.
.
.

switch (message)
{

case WM_COMMAND:
switch (wParam)
{

case miExit:
DestroyWindow(vhwndMain);
break;

case miSample:
case miSystem:
case miMirror:

ResetWindow(wParam);
break;

}
break;
.
.
.

case WM_DESTROY:
if (vhpendata)
{

// PKPD.DLL API: function pointer not needed:

DestroyPenData(vhpendata);
vhpendata = NULL;

}
//
// Unload sample recognizer. (Don't
// unload system default recognizer.)
//
UninstallRecognizer(vhrec);
vhrec = NULL;
PostQuitMessage(0);
break;

default:

lRet = DefWindowProc(hwnd, message, wParam, lParam);
break;

}
return lRet;

}

InputWndProc
The InputWndProc procedure receives the WM_LBUTTONDOWN message that signals the start of an
input session. It distinguishes between a pen-down event and a true mouse event, using the methods
described in the "Beginning an Input Session" section in Chapter 2.

When it detects the start of a pen-input session, InputWndProc calls the DoDefaultPenInput function to
handle the chores of initialization, data collection, and inking.

As described in the "Step 3: PE_GETPCMINFO Message" section in Chapter 2, InputWndProc
immediately receives a PE_GETPCMINFO submessage. The lParam variable points to an initialized
PCMINFO structure that the system will use for recognition. The SREC recognizer requires the structure
to specify a pen-up event as a condition of termination. Accordingly, InputWndProc takes this opportunity
to set the PCM_PENUP flag.

InputWndProc next receives a PE_BEGINDATA submessage, as described in "Step 6: PE_BEGINDATA
Message" in Chapter 2. In response, the procedure takes one of the following courses of action:

· If currently using the sample recognizer, InputWndProc creates an HRC object for that recognizer
and specifies the HRC in the TARGET structure pointed to by lParam. This tells DoDefaultPenInput
to use the sample recognizer SREC instead of the system default recognizer.

· If displaying a mirror image of the ink, InputWndProc creates an HPENDATA object for the ink and
specifies it in the TARGET structure pointed to by lParam. This tells DoDefaultPenInput to collect
data into the HPENDATA block instead of passing it to a recognizer.

· If using the default recognizer, InputWndProc simply passes the message to DefWindowProc, which
creates an HRC for the default recognizer. The code also demonstrates how an application can take
advantage of the convenience afforded by DefWindowProc, yet override any default assumptions it
makes.
When DefWindowProc returns, lParam still points to the TARGET structure, which now reflects the
default assumptions. One of these assumptions limits to one the maximum number of guesses the
system recognizer should return. Since PENAPP requires a maximum of five guesses, it changes the
value by calling SetMaxResultsHRC for the HRC that DefWindowProc creates.

The PE_ENDDATA submessage informs InputWndProc that the input session has ended. The procedure
collects any symbols returned by the current recognizer into an array of symbol strings called
vsyvSymbol. This portion of the code does not check to see which menu option is current. It simply
collects symbols into the array if available. If the Mirror option is selected, the attempt to collect
recognized symbols harmlessly fails since no HRC exists.

After it collects the data, InputWndProc invalidates all three child windows. This sends WM_PAINT
messages to each window, clearing the Input window and causing the other two windows to display their
new data.

#define MAX_GUESS 5 // Maximum number of guesses
#define MAX_CHAR 20 // Maximum number of characters per
guess

// Global Variables ***
HRCRESULT vrghresult[MAX_GUESS]; // Array of results
SYV vsyvSymbol[MAX_GUESS][MAX_CHAR]; // Array of symbol strings
int vcSyv[MAX_GUESS]; // Array of string lengths
.
.
.

LRESULT CALLBACK InputWndProc(

HWND hwnd, //
Window handle

UINT message, //
Message

WPARAM wParam, //
Varies

LPARAM lParam) //
Varies
{

LONG lRet = 0L; // Initialize return code to FALSE
HRC hrc; // HRC object
HDC hdc;
PAINSTRUCT ps;
DWORD dwInfo;
int i, cGuess;

switch (message)
{

.

.

.
 case WM_LBUTTONDOWN:
//
// Two possibilities exist: user is using mouse or the pen.
// The latter case indicates the user is starting to write.
//

dwInfo = GetMessageExtraInfo();
if (IsPenEvent(msg, dwInfo))
{
 if (DoDefaultPenInput(vhwndInput,

 (UINT)dwInfo) == PCMR_OK)
lRet = TRUE;

else
lRet = DefWindowProc(hwnd, msg, wParam, lParam);

}
break;

case WM_PENEVENT:

switch (wParam)
{
 case PE_GETPCMINFO:

//
// If using SREC recognizer, ensure session ends
// on pen-up.
//
if (viMenuSel == miSample)

((LPPCMINFO) lParam)->dwPcm |= PCM_PENUP;
lRet = DefWindowProc(hwnd, msg, wParam, lParam);
break;

case PE_BEGINDATA:
//
// 1) If using sample recognizer, create an HRC

// for it and specify it in the TARGET structure
// pointed to by lParam. This tells
// DoDefaultPenInput to use the sample recognizer
// instead of the system default.
//
// 2) If displaying mirror image of ink, create an
// HPENDATA for it. This tells DeDefaultPenInput
// to collect data into the HPENDATA object
// instead of passing it to a recognizer.
//
// 3) If using default recognizer, pass to
// DefWindowProc. DefWindowProc sets the maximum
// number of guesses to 1; the code below shows
// how to access the HRC that DefWindowProc
// creates and reset the maximum number of
// guesses to MAX_GUESS.
//

if (vhpendata)
{

DestroyPenData(vhpendata);
vhpendata = NULL;

}

switch (viMenuSel)
{

case miSample:
hrc = CreateCompatibleHRC(NULL, vhrec);
if (hrc)
{

((LPTARGET) lParam)->dwData = hrc;
lRet = LRET_HRC;

}
break;

case miMirror:

vhpendata = CreatePenData(NULL, 0,

PDTS_HIENGLISH, 0);
if (vhpendata)
{

((LPTARGET) lParam)->dwData =
vhpendata;

lRet = LRET_HPENDATA;
}
break;

case miSystem:

lRet = DefWindowProc(hwnd, msg,

wParam, lParam);
//
// On return, lParam->dwData points to

HRC.
// Use it to reset max number of guesses.
//

SetMaxResultsHRC(
 ((LPTARGET) lParam)-

>dwData,
 MAX_GUESS);

break;
}
break;

case PE_ENDDATA:
//
// DefWindowProc will destroy vhpendata, so if
// collecting mirror image, don't let DefWindowProc
// handle message.
//
 if (viMenuSel != miMirror)
 lRet = DefWindowProc(hwnd, msg, wParam, lParam);
 break;

case PE_RESULT:
//
// At end of input, collect recognition results (if
// any) into symbol strings. DoDefaultPenInput
// generates the PE_RESULT submessage only when
// using a recognizer. The lParam contains the HRC
// for the recognition process.
//
// Collect pen data for DrawRawData

vhpendata = CreatePenDataHRC((HRC) lParam);

// Initialize array to zero
for (i = 0; i < MAX_GUESS; i++)

vcSyv[i] = SYV_NULL;

// Get number of guesses available
cGuess = GetResultsHRC((HRC) lParam,

 GRH_ALL,
 (LPHRCRESULT)

vrghresult,
 MAX_GUESS);

// Get guesses (in vsyvSymbol) and
// their lengths (in vcSyv)

if (cGuess != HRCR_ERROR)
for (i = 0; i < cGuess; i++)

vcSyv[i] = GetSymbolsHRCRESULT(

vrghresult[i],
 0,
 (LPSYV)

vsyvSymbol[i],
 MAX_CHAR);

break;
.
.
.

default:
lRet = DefWindowProc(hwnd, msg, wParam, lParam);

} // End
switch (wParam)

break;

default:
lRet = DefWindowProc(hwnd, message, wParam, lParam);

 } // End
switch (msg)

return lRet;
}

InfoWndProc
PENAPP displays results in the Info window. When the InfoWndProc procedure receives a WM_PAINT
message, it calls one of three functions to display the results, depending on the current menu selection. It
calls:

· DisplayGuesses if the Default option is chosen.
· DrawArrow if the Sample option is chosen.
· DrawMirrorImage if the Mirror option is chosen.

The following list describes the three functions and points out interesting portions of their code.

DisplayGuesses
The DisplayGuesses function writes the guesses returned from the default recognizer. The guesses
appear in a column, listed in descending order of confidence. The for loop shown below converts the
symbol values to characters, then calls the Windows function TextOut to display the text.

VOID DisplayGuesses(HDC hdc) // DC handle
{

TEXTMETRIC tm;
int nX, nY; //

Text coords
.
.
.

for (i = 0; i < MAX_GUESS; i++)
{

if (vcSyv[i])
{

SymbolToCharacter((LPSYV) vsyvSymbol[i],
 vcSyv[i],
 (LPSTR) szText,
 (LPINT) &cChar);

TextOut(hdc, nX, nY, (LPSTR) szText, cChar);
nY += tm.tmExternalLeading + tm.tmHeight;

}
}

}

DrawArrow
DrawArrow draws an arrow to indicate the symbol value returned from the SREC recognizer. SREC
returns a compass direction determined from the start and end points of the stroke. DrawArrow reads the
direction in vsyvSymbol and diplays an appropriate arrow.

DrawMirrorImage
DrawMirrorImage creates a mirror image of the data by subtracting each x-coordinate from the tablet
width. This moves each point from one side of the tablet to a corresponding position on the other side. In
other words, the original distance from the tablet's left side now becomes the point's distance from the
tablet's right side.

DrawMirrorImage works in five steps:

1. Creates a duplicate HPENDATA of the input data.
2. Calls TrimPenData to remove unneeded information from the block.
3. Converts the new HPENDATA block to a mirror image.
4. Displays the mirror image by calling DrawPenDataFmt.
5. Deletes the mirror image HPENDATA block.

RawWndProc
The RawWndProc function is a standard Windows procedure for the Raw Data child window. It calls the
DrawRawData function to draw a copy of the input resized for the Raw Data window. Normal pen-down
strokes appear in the current window color; pen-up strokes appear in blue. Note that the system
recognizer GRECO.DLL does not collect pen-up strokes. Therefore, the blue pen-up strokes do not
appear when default recognition is selected from the menu.

DrawRawData calls the DrawPenDataEx function to display the strokes. Since DrawPenDataEx does
not show pen-up strokes, DrawRawData first changes all pen-up strokes to pen-down strokes. The
following fragment illustrates this:

VOID DrawRawData(HDC hdc)
{

PENDATAHEADER pendataheader; // Header for vhpendata
HPEN hpenUp, hpenSave; // GDI pen for up-strokes
UINT fPen; // Pen flag
UINT iStroke=0; // Stroke counter
int nWidth; // Ink width

.

.

.
if (!GetPenDataInfo(vhpendata, &pendataheader, NULL, 0))

return;

nWidth = NSetExtents (hdc, &pendataheader, &rectWnd);
hpenUp = CreatePen(PS_SOLID, nWidth, rgbBlue);
hpenSave = SelectObject(hdc, hpenUp);

// Loop for each stroke, beginning with first
for (iStroke = 0; iStroke < pendataheader.cStrokes; ++iStroke)
{
//
// If down stroke, use same ink characteristics as original.
// If up stroke, first call SetStrokeAttributes to convert it
// to a down stroke, then draw it in blue ink with GDI pen.
//

 if (GetStrokeAttributes(vhpendata, iStroke, NULL, GSA_DOWN))
fPen = DPD_DRAWSEL;

 else
 {

SetStrokeAttributes(vhpendata, iStroke, 1, SSA_DOWN);
fPen = DPD_HDCPEN;

 }

 iRet = DrawPenDataEx(hdc, NULL, vhpendata, iStroke, iStroke,
 0, IX_END, NULL, NULL, fPen);

 // Set altered strokes back to their original pen-up state

 if (fPen == DPD_HDCPEN)
 SetStrokeAttributes(vhpendata, iStroke, 0, SSA_DOWN);
}

SelectObject(hdc, hpenSave);

DeleteObject(hpenUp);
return

}

Writing a Recognizer
A recognizer is a dynamic-link library (DLL) that interprets lines of ink as characters and symbols. Version
2.0 of the Pen API allows a pen-based application to install multiple recognizers and use them selectively.
Each recognizer should specialize in recognizing a particular set of symbols instead of trying to handle
many different types. Besides keeping the recognizer code manageable, this approach lets an application
choose among several available recognizers to fulfill its current recognition needs.

The recognizer developer must know both sides of the interface between application and recognizer. The
foregoing chapters, particularly Chapter 5, "The Recognition Process," should be read before venturing
into this one.

Such a developer should also have some familiarity with the coding requirements of a DLL. For
information about how to write a DLL, see the Guide to Programming manual in the Microsoft Windows
Software Development Kit. In addition, the "Writing a Dynamic-Link Library for Windows" chapter in the
MASM version 6.1 Programmer's Guide offers valuable information about DLL coding requirements.

This chapter describes the framework of a recognizer DLL and the functions it must export. The final
section presents a sample recognizer called SREC. The source file for SREC resides in the SAMPLES\
PEN\SREC subdirectory.

Recognizer Objects
Three objects serve the process of recognition, identified by their handles: recognition context (HRC),
recognition context result (HRCRESULT), and word list (HWL). The structure and implementation of
these objects are left to the recognizer developer and remain invisible to applications and the system.
However, the objects must comply with the following two requirements:

· The handle value must be a 32-bit pointer to the object in memory.
· The first DWORD (32 bits) of the memory that the handle points to is reserved for system use. The

recognizer must not alter the DWORD value during the life of the object.
Thus, a recognizer's internal structure of a recognition object should be of the following form:

typedef struct {
DWORD dwReserved;

.

.

.
} INTERNALOBJECT;

It is the application's responsibility to destroy the recognition objects when finished. A recognizer should
validate all handles to ensure an object exists before processing. Although a product of an HRC, an
HRCRESULT is usually an independent object. Destroying an HRC does not destroy its HRCRESULT
objects, which remain valid objects and must be destroyed separately.

A single HWL object can be associated with multiple HRC objects at any given time. The recognizer
should not allow alteration of an HWL while processing any of its associated HRC objects. Similarly, the
recognizer should not allow destruction of an HWL before the destruction of all its associated HRC
objects. In either case, the recognizer should return an error to the application.

How a Recognizer Works
There are two techniques for recognizing handwriting, called bitmap and vector recognition.

Bitmap recognition attempts to match an ink image with a record of known character images. The bitmap
recognizer sees the ink data as a stencil pattern of points that it can compare to a library of patterns,
searching for the closest match. This technique, employed by optical character recognizers (OCRs),
works well for patterns limited to a few styles and sizes.

In contrast, vector recognition sees the ink as lines rather than points. The method considers
characteristics of the lines collected as the pen moves. These characteristics include sequence,
curvature, direction, and so forth. Given the wide varieties and styles of handwriting, vector recognition
works best for deciphering pen input. The Pen API does not mandate which method a recognizer
employs, but is designed to facilitate vector rather than bitmap recognition.

List of Exported Functions
Technically, an application does not call directly into a recognizer's exported functions, though the
distinction is not important to the recognizer. Instead, all calls go to the system, which acts as a
switchboard to route the calls to the proper recognizer when more than one recognizer is installed. For
example, when an application loads a recognizer with InstallRecognizer, that recognizer exports
functions with the same name as those exported by other recognizers, including the default recognizer.
The system automatically transfers calls to the correct recognizer based on the HRC argument or other
value that identifies the intended recipient.

As a DLL, a recognizer must export functions to the pen system that installs the recognizer. This section
lists these recognition functions, describes their purpose, and identifies them as required or optional.

The optional functions that a recognizer should provide depend on the clients it will serve. Commonly, a
recognizer DLL is part of an application package designed only for that application. As author of both
client application and its private DLL, the developer need write only those functions the application
requires. In this case, the developer is also free to design other functions not specified by the Pen API.

At the other extreme, some recognizers serve client applications indiscriminately. For example, a
developer might market a recognizer of foreign script to various application developers with international
product lines. A recognizer can also take on the role of system default recognizer, in which case it must:

· Export all recognizer functions.
· Recognize letters, punctuation, numbers, and predefined gestures from ink data.
· Associate raw data with matched results.
· Return characters only within the requested subset.
· Return an "I don't know" response when appropriate.

A system default recognizer should support all recognizer functions, not merely export stub versions of
the optional functions. At the very least, the recognizer must return an HRCR_UNSUPPORTED value
from functions it does not support. For a description of how to specify the system recognizer through the
registry, see Appendix A, "Differences Between Versions 1.0 and 2.0 of the Pen Application Programming
Interface."

The following sections describe all 47 recognition functions of the Pen API version 2.0. The lists of
functions represent the following categories:

· Initialization
· HRC functions
· HRCRESULT functions
· Alphabet support
· Word lists
· Training

All recognizers must export 13 required functions, which are indicated by asterisks in the following tables.
The functions without asterisks are optional for a recognizer. Each table corresponds to one of the
categories listed previously, with functions arranged in alphabetic order within the table.

Initialization
The Pen API specifies the following functions for initializing, modifying, and closing down the recognizer.
Note that, in version 2.0 of the Pen API, the required function ConfigRecognizer handles all initialization
and configuration tasks. The other initialization functions are obsolete in version 2.0 and should only be
included in a recognizer if it is expected to work with older applications that work with a version 1.0
recognizer (see the Microsoft Pen Windows, version 1.0 documentation for descriptions of these
functions).

Function Description
ConfigRecognizer* Provides access for querying or altering

recognizer configuration. In version 2.0, only the
system calls ConfigRecognizer. Applications call
ConfigHREC, which the system translates into a
call to ConfigRecognizer.

CloseRecognizer Required only for compatibility with version 1.0
API. Called when the system uninstalls a version
1.0 recognizer.

InitRecognizer Required only for compatibility with version 1.0
API. Called when the system installs a version 1.0
recognizer.

RecognizeDataInternal Required only for compatibility with version 1.0 API.
The system calls this function only when an
application calls RecognizeData.

RecognizeInternal Required only for compatibility with version 1.0 API.
The system calls this function only when an
application calls Recognize.

HRC Functions
In general terms, the HRC functions carry out the recognition process. Together, they collect raw data,
derive recognized symbols from the data, and place the symbols into HRCRESULT objects. Their work
ends with recognition. To retrieve the recognized symbols, an application calls the HRCRESULT functions
described in the next section.

Function Description
AddPenInputHRC* Adds input to the recognizer's HRC

object. This function is normally called at
every pen movement, providing data a
few points at a time.

CreatePenDataHRC Returns an HPENDATA handle for the
pen data within the HRC.

CreateCompatibleHRC* Creates an empty HRC object, ready to
receive input data.

DestroyHRC* Frees the memory occupied by an HRC
object, invalidating the handle value.

EnableGestureSetHRC Enables or disables the recognition of a
specified set of gestures.

EnableSystemDictionary
HRC

Specifies whether or not the recognizer
should use its dictionary to validate
recognition guesses.

EndPenInputHRC* Notifies the recognizer that input has
ended for the session. This function does
not initiate recognition of the collected
data; the client application must call
ProcessHRC to do that.

GetBoxResultsHRC Gets recognition results for a range of
boxes.

GetGuideHRC Retrieves a copy of the GUIDE structure
(if any) used in the HRC.

GetHRECFromHRC* Gets the module handle to the recognizer
DLL attached to the HRC.

GetMaxResultsHRC Gets the current maximum number of
guesses the recognizer can make for the
HRC.

GetResultsHRC* Retrieves recognition results as
HRCRESULT objects. Each object
represents one guess.

ProcessHRC* Tells the recognizer that it should begin
recognition and sets the maximum
amount of time allowed for the task.

SetGuideHRC Specifies a GUIDE structure for
recognition.

SetMaxResultsHRC Sets the maximum number of guesses
the recognizer can make for the HRC.

HRCRESULT Functions
The HRCRESULT functions retrieve recognized symbols and other associated information from the
recognizer. The GetResultsHRC function described in the previous table collects results into one or more
HRCRESULT objects. Each object represents an alternative interpretation the recognizer has made about
the input. Once an application calls GetResultsHRC to create the HRCRESULT objects, it can then call
the HRCRESULT functions listed here to get the recognized characters from the objects.

Function Description
CreateInksetHRCRESULT Creates an inkset corresponding to

recognition results.
DestroyHRCRESULT* Frees the memory occupied by an

HRCRESULT object, invalidating the
handle value.

GetAlternateWordsHRCRESUL
T

Retrieves alternative guesses from the
results of a recognition process.

GetBoxMappingHRCRESULT Retrieves the indices for a range of
symbols in boxes. For example, if
writing begins in the fifth box of a guide,
this function returns the index 4 for the
first symbol.

GetHotspotsHRCRESULT Returns the critical point for a given
recognized gesture. (See the "Hot
Spots" section.)

GetSymbolCountHRCRESULT* Gets the length of the symbol array that
forms one of the recognizer's guesses.

GetSymbolsHRCRESULT* Retrieves symbol values corresponding
to one of the recognizer's guesses.

Specifying an Alphabet Set
By supporting the following alphabet functions, a recognizer enables an application to specify which
alphabet sets to consider during recognition. Alphabets are sets of characters within the entire range of
characters the recognizer can interpret. For example, an application can limit recognition to any
combination of lowercase characters, punctuation, math symbols, and so forth.

The Pen API defines ALC_ values to identify an alphabet set. For further information on alphabets and an
abbreviated list of the most common ALC_ values, see "Configuring the HRC" in Chapter 5, "The
Recognition Process." A full list of ALC_ values appears in Chapter 13, "Pen Application Programming
Interface Constants."

The Pen API allows an application to set a priority when using multiple alphabet sets. Priority can resolve
conflicts when one glyph has different interpretations in different alphabets. For example, consider a case
in which input consists of both letters and numerals, but the application expects numerals more often. By
setting an alphabet of ALC_ALPHANUMERIC and a priority of ALC_NUMERIC, the application tells the
recognizer to consider both letters and numerals, but interpret for numerals first. This helps resolve the
problem of distinguishing between the numeral "0" and the letter "O."

The following table lists the optional recognizer functions that pertain to alphabets.

Function Description
GetAlphabetHRC Retrieves bitwise-OR flags of ALC_

values indicating which alphabet(s) the
recognizer can currently recognize.

GetAlphabetPriorityHRC Retrieves bitwise-OR flags of
ALC_values indicating priority.

SetAlphabetHRC Constrains recognition to a specified set
of alphabet characters.

SetAlphabetPriorityHRC Specifies the priority of alphabets used
during recognition.

SetBoxAlphabetHRC Constrains recognition to a set of
specified alphabet characters for
individual boxes in a group of boxes.

Word Lists
A word list acts as a broad alphabet set. A list consists of valid words that can influence the confidence a
recognizer places in a guess. After guessing at a word (or phrase), a recognizer can search for the guess
in one or more word lists. Locating a guess in a word list helps verify the validity of the guess.

A word list can consist of a small group of words permanently stored in the recognizer's data segment.
Often, however, the words reside in an accompanying file that the recognizer reads as required. A word
list file should be in standard ANSI text format, one word per line, with each line ending in a carriage
return and linefeed. This allows the user to emend the files, if necessary, with a text editor.

A recognizer that uses word lists should export the ReadHWL and WriteHWL functions. These functions
read and write standard word list files, enabling an application to move words directly between a file and
an HWL object.

The table below lists the exported functions for a recognizer that uses word lists.

Function Description
AddWordsHWL Adds a specified collection of words to an

existing word list in memory.
CreateHWL Creates a word list in memory, either empty or

containing a given list of words.
DestroyHWL Destroys a word list, invalidating the handle.
GetWordlistCoercion
HRC

Retrieves the current degree of influence a
word list or the system dictionary has on the
confidence level of a guess.

GetWordlistHRC Retrieves a word list from the HRC object.
ReadHWL Reads from a file into an empty word list. The

words must be in ANSI text format, one word
per line, each line ending with a carriage
return and linefeed.

SetWordlistCoercion
HRC

Specifies the influence a word list or the
system dictionary should exert on the
confidence level of a guess.

SetWordlistHRC Sets a word list into the HRC object.
WriteHWL Writes from a word list to a file. The words are

written as ANSI text, one word per line.

Training
Training is optional for a recognizer and the method of its implementation is up to the developer. Through
training, a recognizer can consider the individual style and writing characteristics of different users when
interpreting handwriting.

Training can be classified as either passive or active. However, the distinction usually pertains more to the
application than to the recognizer. In passive training, the application quietly calls the recognizer's training
functions whenever the user corrects a wrong guess. Correctly implemented, passive training helps
ensure that the recognizer learns from its mistakes.

Active training takes place only when specifically requested by the user. A training window prompts the
user for written samples, then the verified input is given to the recognizer to store in its database for that
user. The recognizer can provide the active training support, though usually this task is left to an
application. Microsoft usability studies have shown that users do not object to the time invested in active
training.

The following table lists the functions that a recognizer with training capabilities can export. Only
TrainHREC is used by version 2.0 Pen API. The other functions are obsolete in version 2.0 and should be
included in a recognizer only if it is expected to work with older applications that work with a version 1.0
recognizer (see the Microsoft Pen Windows version 1.0 documentation for descriptions of these
functions).

Function Description
TrainContextInterna
l

Passes a previous recognition result that may
contain errors along with the required
interpretation. The system calls this function in
response to a call to TrainContext. This
function applies only to training recognizers
compatible with version 1.0 of the Pen API. It is
superseded by the TrainHREC function.

TrainHREC Passes ink data and its required interpretation
to the recognizer. The recognizer then stores
the data and interpretation for future reference.

TrainInkInternal Passes a previous erroneous recognition result
along with the correct interpretation. The
system calls this function when the application
calls TrainInk. TrainInkInternal is rendered
obsolete by TrainHREC and is only for training
recognizers compatible with version 1.0 of the
Pen API.

Interpreting Input
Typically, a recognizer converts pen input to recognized data in three steps:

1. Collect and process the raw pen input data.
2. Segment the written symbols.
3. Note the order and direction of pen strokes.

Processing Raw Data
Raw data for recognition consists of pen coordinates. At a minimum, the recognizer must collect
coordinate data while the pen is in contact with the tablet. Optionally, the recognizer can also process
additional pen data such as pen pressure, the height of the pen tip above the pad, the angle of the pen,
and the rotation of the pen. Not all pen devices can provide such information.

The Microsoft Handwriting Recognizer (GRECO.DLL) processes only coordinate data. The Pen API
provides the OEMPENINFO structure for other types of pen data. For details, see the entry for
OEMPENINFO in Chapter 11, "Pen Application Programming Interface Structures."

Noise Reduction and Normalization
To improve recognition, a recognizer can optionally employ noise reduction and normalization techniques.
Noise reduction filters the input to weed out erroneous input¾for example, pen skips, inadvertent marks
from the user, or spurious noise from the input device.

Normalization corrects the natural skewing of handwritten text. In the same way that lines of text tend to
run askew on blank paper, lines of pen input are usually not parallel to the top and bottom of the tablet.
(An application can provide guidelines to help correct this tendency.)

Coordinates should be normalized relative to a horizontal line, called the baseline, that marks the bottom
of the text. The baseline is analogous to a single line on lined notebook paper. Letter descenders, such as
the lower parts of "y" or "j," descend below the baseline.

If a guide is present, its vertical coordinate defines the baseline. The baseline of a single-line guide in
absolute coordinates is the sum of the yOrigin and cyBase members of the GUIDE structure. For more
information, see the reference description of the GUIDE structure.

Allowed Time
The recognizer must return within the period of time specified by the dwTimeMax parameter of the
ProcessHRC function. This parameter can have the values PH_MIN, PH_DEFAULT, or PH_MAX.
Respectively, these values limit the time allowed for processing to approximately 50 milliseconds, 200
milliseconds, or as much time as required.

For values other than PH_MAX, the recognizer must ensure that it does not exceed the allotted time. The
recognizer can either regularly poll with the GetTickCount function to mark the passage of time or,
through the SetTimer function, provide a callback function that sets a time-out flag. The SREC sample
recognizer described at the end of this chapter demonstrates the latter technique.

Allowed Number of Guesses
The recognizer must return no more than the maximum number of guesses specified by the
SetMaxResultsHRC function. For a description of this function, see the "Number of Recognition
Guesses" section in Chapter 5. By default, the recognizer returns only its best guess with no alternative
guesses.

Segmentation of Symbols
A recognizer can view symbols at any granularity. For instance, most handwriting recognizers see
individual letters and numerals as symbols. A recognizer for cursive writing, on the other hand, may see a
complete word as a single symbol without distinguishing each letter of the word.

No matter how it views symbols, a recognizer must separate them within a stream of written symbols, a
process called segmentation. The task of segmenting letters is greatly facilitated if the application
provides box guides. In this case, the recognizer can assume that strokes lying within a box constitute a
single character. The problem of accurate segmentation becomes more difficult for unguided text.

Segmentation is a crucial issue for recognizing different handwriting styles. The following table lists the
forms of input in decreasing order of constraint on the user. The information in the table is taken from IBM
Research Report RC 11175, No. 50249, (May 21, 1985), An Adaptive System for Handwriting
Recognition, by C. C. Tappert.

Input form Definition
Boxed input Each character appears within its own box.
Discrete spaced A set of strokes in a given space belong to the same

character. (This is also called external segmentation.)
Discrete run on Printed characters can overlap.
Cursive Letters are connected by ligatures. The recognizer

must either identify discrete letters or interpret a whole
word at a time.

Mixed The recognizer can segment discrete, run-on, and
cursive writing.

Figure 8.1 illustrates these various styles.

{ewc msdncd, EWGraphic, bsd23553 0 /a "SDKIMB.BMP"}

The Pen API places few restrictions on the recognizer. At a minimum, however, a default recognizer must
be able to recognize discrete characters because many applications do not use boxed input.

Stroke Order and Direction
Noting the order and placement of strokes can help a recognizer handle the following cases:

· Delayed strokes. A delayed stroke occurs after other strokes, but belongs to an earlier, unfinished
character. For example, in writing the word "two," the user might cross the "t" only after writing the
rest of the word.

· Correction strokes. A correction stroke alters the interpretation of other strokes ¾ for example, placing
a small stroke on the top of a "y" to change it to a "g." Correction strokes are often delayed.

· Characters written out of order. For example, the user should be able to first write "t o," then fill in a
"w" between the letters. The recognizer should recognize the completed word as "two" instead of
"tow."

· Variations in stroke order or direction. Different users often write the multiple strokes of characters in
a different order and direction. To take an extreme example, the four strokes forming a capital "E" can
be written in 2 (4) *4! = 384 distinct ways.

Returning Results
To return results, the recognizer must conform to the procedures described in the section "Getting
Results" in Chapter 5. That section examines the case where the words "clear," "dear," "clean," "dean,"
and "deer" represent valid interpretations of a handwritten word. In such a case, the recognizer should
return the possibilities arranged in order of decreasing likelihood.

Without an internal concept of likelihood, the recognizer must impose an arbitrary order. However, for
multiple recognizers to cooperate, a recognizer must have some concept of a poor match and be able to
return "unknown" in lieu of a guess. While the pen API does not strictly require a recognizer to assign
confidence levels to its guesses, without confidence values a recognizer cannot work efficiently with other
recognizers.

The recognizer must be able to associate individual strokes with a recognized symbol. Applications can
use the stroke data to correctly juxtapose the recognized text with the ink on the screen, redraw the data,
or send information to other recognizers.

Speed and timing are very important in the recognition process. A recognizer should recognize input at
least at the speed of normal handwriting, approximately two to three characters per second.

Results Messages
Results messages concerning recognition come from the system, not the recognizer. The messages
depend on what services the application uses:

· If DoDefaultPenInput runs the recognition process, it sends a chain of messages to the application
as described in Chapter 2, "Starting Out with System Defaults."

· If the application calls one of the version 1.0 recognizer functions, such as Recognize or
ProcessWriting, the system generates a WM_RCRESULT message. The system can send many
WM_RCRESULT messages during a single recognition event, depending on the frequency that the
application has specified for receiving data. The lParam of each message points to a new, self-
contained RCRESULT structure that contains the recognition results generated since the last
WM_RCRESULT message.

The RCRESULT Structure
A recognizer can store its results in any format the developer wishes. It need not create an RCRESULT
structure except in response to calls to certain superseded functions such as Recognize and
RecognizeData. For completeness, this section describes the RCRESULT structure, which the developer
may wish to use as a model for storage. Although a recognizer must calculate the information found in an
RCRESULT structure, it need not organize the information in the same format.

Note The RCRESULT structure is not required in version 2.0 of the Pen API and is supported only
to maintain compatibility with older applications that use version 1.0 recognizer API.

The first member of the RCRESULT structure is a list called the symbol graph, which contains all the
recognizer's guesses. An application can read the guesses in order of likelihood by walking through the
symbol graph.

The Symbol Graph
The best way to understand the symbol graph is to first diagram its contents before describing how to
actually read it. The following discussion again takes up the example in the section "Getting Results" in
Chapter 5, in which the recognizer generated the five guesses "clear," "dear," "clean," "dean," and "deer."
A diagram of the symbol graph that represents all these possibilities might look like this:

Letter: { cl | d } e { a | e } { r | n }
Confidence: 80% 60% 100% 85% 20% 80% 50%

Average: clear 86%
 dear 81%
 clean 79%
 dean 74%
 deer 58%

If you study the diagram a moment, you will see its logic. Alternative letters appear separated by a C
bitwise-OR symbol, with the most likely alternative first. All the guesses in this example, however, agree
that the second (or third) character is the letter "e," so it has no alternatives. Taking the first letter in each
alternative set produces the most likely of the guesses ¾ in this case, the word "clear."

The symbol graph includes confidence values for each character or character set (as in the case of the
interpretation "cl"). The recognizer can determine a confidence value for an entire word by averaging the
values for each character or character set, as shown in the diagram above. (Note that this hypothesis is
purely for purposes of discussion. The pen API does not mandate how a recognizer determines its
confidence levels. The influence of word lists and other factors may also change confidence levels.)

Symbol graphs must, therefore, contain three types of information:

· All characters (or character sets) determined as likely interpretations for a set of pen strokes
· A map identifying the pen strokes that correspond to each interpretation
· A confidence level for each interpretation

As described in Chapter 11, "Pen Application Programming Interface Structures," the symbol graph is a
structure of type SYG. The SYG structure contains two additional data structures that provide the needed
information: symbol correspondence and symbol element structures.

A symbol correspondence structure SYC delineates a specific subset of the strokes entered by the user.
Each SYC contains the first and last strokes of a subset; these strokes and the strokes between them

define the subset of pen data associated with the SYC. The symbol graph contains an array of SYC
structures, each of which corresponds to a different part of the ink input. Taken together, the SYC
structures define all the ink gathered during the input session.

A SYG structure also contains an array of symbol element SYE structures. An SYE contains a symbol
value, a confidence level, and an index into the array of SYC structures. Each character or character set
in the recognized input has its own symbol element.

The Best Guess
The RCRESULT structure also provides information about the recognizer's "best guess." The best guess
is simply the first interpretation in the symbol graph, which lists interpretations in descending order of
probability. Since an application is often interested only in the most likely interpretation, the recognizer
should place in the RCRESULT the following three members specifically to identify the best guess:

· The lpsyv member points to a null-terminated symbol string containing the best guess.
· The cSyv member contains the number of symbols in the best guess string.
· The hSyv member is the handle to the memory block to which lpsyv points.

Location and Position of the Input
The RCRESULT structure also contains information regarding the location and position of the ink entered
by the user.

· The nBaseLine member is the recognizer's estimate of the baseline of the ink entered by the user.
(For a definition of baseline, see "Noise Reduction and Normalization" earlier in this chapter.) If the
baseline is not known, the recognizer sets this value to 0. The Microsoft Handwriting Recognizer
(GRECO.DLL) sets nBaseLine to 0.

· The nMidLine member is the recognizer's estimate of the midline of the ink entered by the user. If the
midline is not known, the recognizer sets this value to 0. The Microsoft Handwriting Recognizer sets
nMidLine to 0.

· The rectBoundInk member is a Windows RECT structure. It holds the bounding rectangle that
circumscribes the area of the screen on which the user has written. Typically, an application uses
rectBoundInk to invalidate the screen area to update the display in the appropriate location. This
occurs, for example, when Windows replaces ink on the screen with recognized text.

Contextual Information
Two elements of the RCRESULT structure provide information about the recognition event, but not as a
part of the results of recognition. They are lprc, a far pointer to the RC structure passed to the Recognize
function, and wResultsType, a flag that describes how the recognition event proceeded. The
wResultsType flag contains a combination of RCRT_ constants, described in Chapter 13, "Pen
Application Programming Interface Constants."

The Ink
The final two members of the RCRESULT structure contain information about the ink entered by the user.

· The pntEnd member contains the last point of the ink data from the user only if PCM_RECTBOUND
or PCM_RECTEXCLUDE have been specified. An application sets these flags either in the lPcm
member of the RC structure or the dwPcm member of the PCMINFO structure.

· The hpendata member is a handle to a pen data memory block that contains all of the ink information
entered by the user.

Hot Spots
While recognizing a symbol, the recognizer may also identify critical points on the symbol called hot
spots. Hot spots can apply to any symbol but usually are of interest only for gestures. For example, if the
user writes an X for deletion, the cross of the X ¾ its hot spot ¾ points to the item to be deleted. If the
recognizer identifies hot spots for a recognized symbol, it places coordinates for all hot spot points in the
rgpntHotSpot member of the symbol's SYG structure. This array can hold up to MAXHOTSPOT points.
Note that all symbols do not have the same number of hot spots, and many symbols have none.

Writing a Recognizer
A recognizer must reflect the developer's requirements, design, and programming style. Although it
cannot prescribe any one method for creating a recognizer, this section offers guidance on writing several
important recognition functions. The section also presents a sample recognizer called SREC to illustrate
some of the information in this chapter.

For a description of how an application uses the InstallRecognizer function to load a recognizer function,
see "Creating the HRC" in Chapter 5. The reference section for InstallRecognizer in Chapter 10 also
discusses how to load a recognizer by using the LoadLibrary function to aid in debugging the recognizer.
To designate a recognizer as the system default recognizer, see "Registry Configuration" in Appendix A.

Recognition Functions
The following sections provide fragmentary examples of the recognition functions AddPenInputHRC,
CreateCompatibleHRC, CreateInksetHRCRESULT, CreatePenDataHRC, and DestroyHRC.

For purposes of discussion, the examples assume the recognizer's HRC takes the form of a private
structure called HRCinternal. This structure contains a handle to an HPENDATA block, which stores the
stroke information and pen data points for an input session. (For a description of HPENDATA, see "The
HPENDATA Object" in Chapter 4.) The HRC applies only to a single session ¾ say, a word written by the
user. The client application must create a new HRC to recognize the next word.

The following typedef statement defines the hypothetical HRC object used by the example code
fragments in this section:

typedef struct
{

DWORD reserved; // Reserve first DWORD for system
HGLOBAL hglobal; // Handle from GlobalAlloc
HPENDATA hpendata; // HPENDATA handle for input
int wPdk; // Current stroke is pen-up or down

 // Other information for the HRC
.
.

} HRCinternal, FAR *LPHRCinternal;

Notice that the structure reserves the first DWORD for system use. This is required for all recognizer
objects. The structure also groups pertinent variables within the object itself instead of allocating them as
global data. This ensures that the object remains private to the client that creates it.

In the code that follows, all internal functions have an "N" prefix. This helps distinguish them from
standard API functions.

CreateCompatibleHRC
The CreateCompatibleHRC function allocates memory for the HRC object. The example below calls the
Windows function GlobalAlloc and uses the returned memory handle as the HRC. Locking the allocated
memory with GlobalLock provides a far pointer to the allocated HRCinternal structure.

When an input session begins, the pen state is always down. Therefore, the function initializes the wPdk
member to PDK_DOWN.

HRC WINAPI CreateCompatibleHRC(HRC hrcTemplate, HREC hrec)
{

HGLOBAL hglobal; // Handle of allocated HRC object
LPHRCinternal lphrc; // Far pointer to object

.

.

.
// Allocate memory for HRC and get far pointer to it
hglobal = GlobalAlloc(GHND, sizeof(HRCinternal));
lphrc = (LPHRCinternal) GlobalLock(hglobal);

// If failure, return NULL
if (!lphrc)

return NULL;

// Save HRC memory handle, because DestroyHRC will need it
lphrc->hglobal = hglobal;

// If template provided, copy its information to the new HRC
if (hrcTemplate)

NCopyTemplateInfo(hrcTemplate, lphrc);

// Initialize other information
lphrc->hpendata = CreatePenData(NULL, 0, PDTS_HIENGLISH, 0);
lphrc->wPdk = PDK_DOWN;

.

.

.
// If no errors, return pointer as HRC handle
return ((HRC) lphrc);

}

DestroyHRC
Generally, the life of an HRC object is brief. An application destroys the HRC after obtaining results from
the recognizer and creates a new HRC at the start of the next input session.

In the model described above, CreateCompatibleHRC calls GlobalAlloc to allocate system memory in
which the HRC object resides. The function returns a pointer to the fixed allocation as an HRC handle.

DestroyHRC reverses the action, using the original HGLOBAL handle to free the allocated memory.
When DestroyHRC successfully returns, the HRC handle is no longer valid. The application should set
the handle to NULL to prevent accidental reuse, as described in "Destroying the HRC" in Chapter 5.

int WINAPI DestroyHRC(HRC hrc)
{
 LPHRCinternal lphrc = (LPHRCinternal) hrc; // Pointer to HRC

if (!GlobalUnlock(lphrc->hglobal))
return HRCR_OK;

else
return HRCR_ERROR;

}

AddPenInputHRC
As the pen moves, an application continually gets data from the pen driver by calling GetPenInput. It then
passes the retrieved information to the recognizer via AddPenInputHRC. This function may be called
many times before the user completes the stroke. Each time, AddPenInputHRC receives a small subset
of points that collectively form a pen stroke.

Along with the subset of points, AddPenInputHRC receives a STROKEINFO structure that represents
the points in the subset. For example, the member dwTick contains the starting time for each subset, not
the entire stroke. (The starting time of the first subset of a stroke is also the starting time of the entire
stroke.) Similarly, cPnt contains the point count only for the current subset.

The following example lets the system take care of accumulating the points. It calls the
AddPointsPenData API function to add the subset of points to the HPENDATA block belonging to the
HRC. The code also demonstrates how a recognizer can determine when one stroke ends and another
begins. This allows the recognizer to take some intermediate steps to facilitate recognition at the end of
each stroke. Such intermediate work can remove some of the burden from ProcessHRC, improving
response time and perhaps accuracy as well.

int WINAPI AddPenInputHRC(HRC hrc, LPPOINT lppnt, LPVOID lpvOem,
 UINT oemdatatype, LPSTROKEINFO lpsi)
{
 LPHRCinternal lphrc = (LPHRCinternal) hrc; // Pointer to HRC
 int iRet = HRCR_OK; // Return code

.

.

.
//
// If state change from down to up (or vice versa), the previous
// stroke has ended and the point data that lppnt points to belongs
// to a new stroke. Take any intermediate action to process the
// just-completed stroke.
//
if (lpsi->wPdk != lphrc->wPdk)
{

.

. // Take
intermediate action

.
lphrc->wPdk = lpsi->wPdk // Note new pen state

}

// Accumulate stroke points in internal HPENDATA object
if (!AddPointsPenData(lphrc->hpendata, // HPENDATA handle

 lppnt, // Point subset
 lpvOem, // OEM data
 lpsi)) // Subset

STROKEINFO
iRet = HRCR_ERROR;

.

.

.
// Return appropriate error code (HRCR_OK or HRCR_ERROR)
return (iRet);

}

CreatePenDataHRC
The CreatePenDataHRC function returns a handle to an HPENDATA object that contains the raw data
used for recognition. In the example code above, AddPenInputHRC has already done the work of storing
the pen data into an internal HPENDATA. Thus, the hypothetical CreatePenDataHRC function outlined
below simply duplicates the internal object.

HPENDATA WINAPI CreatePenDataHRC(HRC hrc)
{
 LPHRCinternal lphrc = (LPHRCinternal) hrc; // Pointer to HRC

// Clone the internal HPENDATA and return its handle
return (DuplicatePenData(lphrc->hpendata, 0));

}

CreateInksetHRCRESULT
The optional CreateInksetHRCRESULT function creates a corresponding inkset from the data in an
HPENDATA object. For a description of inksets and the INTERVAL structure, see "The HINKSET Object"
in Chapter 4.

A description of the CreateInksetHRCRESULT function first requires a brief discussion of stroke start and
end times. Some of this information also appears in the section "Timing Information" in Chapter 4, but it is
presented here from the point of view of the recognizer rather than the application.

A stroke's start time is the starting tick count of the first group of points that AddPenInputHRC receives
when a new stroke begins. The member dwTick of the STROKEINFO structure is the number of
milliseconds that have elapsed since the system tick reference determined at system startup time. A
recognizer can retrieve this value in an ABSTIME structure through a call to the Pen API function
GetPenMiscInfo:

 ABSTIME atTickRef;
 GetPenMiscInfo(PMI_TICKREF, (LPARAM)((LPABSTIME) &atTickRef));

The STROKEINFO structure also contains in its cPnt member the number of points in the collection.
Because the pen device sends points at a constant rate (called the sampling rate), the number of points in
the collection implies how much time has elapsed between the first and last points.

The sampling rate does not change, so the recognizer need only determine the rate during initialization
and store the value. The following example shows how a recognizer can get the sampling rate from the
pen driver:

PENINFO pinfo;
HDRVR hPenDrv;
int vnSamplingRate;

.

.

.
hPenDrv = OpenDriver("pen", 0, 0);
if (hPenDrv)
{

if (SendDriverMessage(hPenDrv, DRV_GetPenInfo, (LPARAM)&pinfo, 0))
vnSamplingRate = pinfo.nSamplingRate;

CloseDriver(hDriverPen, 0, 0);
}

With this information, CreateInksetHRCRESULT can fill an INTERVAL structure with a stroke's start and
stop times as shown below. The code assumes the HRCRESULT object contains the HRC handle. This
allows the internal function NGetStrokeFromHPENDATA to locate the internal HPENDATA object with the
raw input data.

HINKSET WINAPI CreateInksetHRCRESULT(HRCRESULT hrcresult,
 UINT isyv, UINT csyv)

{
HINKSET hinkset;
INTERVAL interval;
STROKEINFO si;
DWORD dwMsec;
UINT i, j;

// Call Pen API to create hinkset object
hinkset = CreateInkset(GMEM_MOVEABLE | GMEM_DDESHARE);

// Initialize INTERVAL with tick reference (described above)
GetPenMiscInfo(PMI_TICKREF,

 (LPARAM)((LPABSTIME) &interval.atBegin));

// For each SYV in the HRCRESULT between the given indices ...
for (i = 0; i < csyv; i++, isyv++)
{

j = 0;

// For each stroke in the SYV ...
while (NGetStrokeFromHPENDATA(hrcresult, &si, isyv, j++))
{

//
// Calculate the interval for the stroke.
// Note si.dwTick is the number of milliseconds
// that have elapsed since system start-up.
//
dwMsec = (DWORD)(1000L*interval.atBegin.sec +

 interval.atBegin.ms + si.dwTick);
interval.atBegin.sec = dwMsec/1000L;
interval.atBegin.ms = (UINT)(dwMsec % 1000L);

dwMsec = (DWORD)(1000L*interval.atBegin.sec +

 interval.atBegin.ms +
 1000L*si.cPnt/vnSamplingRate);

interval.atEnd.sec = dwMsec/1000L;
interval.atEnd.ms = (UINT)(dwMsec % 1000L);

// Call Pen API function to add interval to inkset
AddInksetInterval(hinkset, (LPINTERVAL) &interval);

}
}
return (hinkset);

}

A Sample Recognizer
This section describes a simple recognizer called SREC that demonstrates some of the information given
in this chapter. The text describes the most interesting parts of the program and illustrates with code
fragments. The complete source listing for SREC.C resides in the SAMPLES\PEN\SREC subdirectory.

SREC is used by the PENAPP application described in Chapter 7, "A Sample Pen Application." To see
how SREC works, you must create both PENAPP.EXE and SREC.DLL using the supplied MAKE files,
then run PENAPP.

When using the SREC recognizer, PENAPP specifies that a stroke ends when the pen leaves the tablet.
Therefore, SREC recognizes only one stroke at a time. SREC takes the beginning and ending points of
the stroke and calculates the nearest compass direction of the line formed by these endpoints.

For its HRC object, SREC creates a structure that contains an HPENDATA handle to the input data, the
module handle returned from InstallRecognizer, and recognition results. The following typedef
statements define the HRC and HRCRESULT objects for SREC. Notice that SREC keeps its
HRCRESULT within the HRC.

typedef struct // HRCRESULT object
{

DWORD reserved; // Reserve top DWORD
SYG syg; // Recognition results

} HRCRESULTinternal, FAR *LPHRCRESULTinternal;

typedef struct // HRC object
{

DWORD reserved; // Reserve top DWORD
HPENDATA hpendata; // Raw pen data to be recognized
HREC hrec; // Module handle for SREC
HRCRESULTinternal hrcresult; // HRCRESULT structure

} HRCinternal, FAR *LPHRCinternal;

When it finishes recognizing a stroke, SREC fills out a SYG symbol graph structure. The structure holds
one of the symbol values listed here:

Symbol value Direction
 syvEast Right
syvSouth Down
syvWest Left
syvNorth Up
syvDot Single tap

The following sections describe the functions that SREC exports. These functions appear under the same
categories described earlier in this chapter, in the section "List of Exported Functions." This allows for
quick cross-referencing between a general description of a function and its actual implementation in
SREC.

Although defined by the Pen API, the function names below appear in monospace font rather than bold
because the names refer to routines in the SREC.C source file.

SREC Initialization Functions
As a Windows dynamic-link library, SREC exports LibMain and WEP. As a recognizer, it also exports the
required initialization function ConfigRecognizer. All recognizers compatible with version 2.0 of the Pen
API must provide these functions.

LibMain and WEP
The first two functions in the SREC recognizer are the standard Windows functions required in any
dynamic-link library, LibMain and WEP. LibMain, the main DLL function, is analogous to WinMain. It
performs any needed initialization and unlocks the data segment of the library. WEP is the standard DLL
termination function, which receives control when Windows unloads the DLL. For a description of WEP,
see the references listed at the beginning of this chapter.

ConfigRecognizer
The ConfigRecognizer function handles the recognizer's initialization tasks and configures it for special
options. When it loads a recognizer, InstallRecognizer internally calls the recognizer's
ConfigRecognizer function with the subcommand WCR_INITRECOGNIZER. In response to this call, the
recognizer should perform any required initialization tasks.

As its name suggests, ConfigRecognizer handles more than initialization work. It also provides the
means for setting recognizer options and to query for capabilities. With version 2.0 of the Pen API, which
can load multiple recognizers, applications do not call ConfigRecognizer, because the function provides
no way to identify the intended library. Instead, applications call the ConfigHREC function, which takes

the same arguments as ConfigRecognizer, with the addition of the HREC handle returned from
InstallRecognizer. Internally, the system identifies the intended recognizer from the handle and passes
the arguments to ConfigRecognizer in the appropriate recognizer. Thus, ConfigHREC and
ConfigRecognizer refer to the same function. ConfigRecognizer is unique in that it is the only function
exported by a recognizer that applications do not call directly.

As the following code fragment shows, SREC returns only its identification string and version number
from ConfigRecognizer. Note also that SREC does not allow itself to be set as the system recognizer.
Since SREC does not support standard editing gestures or recognize characters, it cannot serve as a
system default recognizer.

int WINAPI ConfigRecognizer(UINT uSubFunc,
 WPARAM wParam, LPARAM lParam)
{

int iRet = TRUE;

switch (uSubFunc)
{

.

.

.

case WCR_INITRECOGNIZER: // No initialization or
case WCR_CLOSERECOGNIZER: // clean up duties to

break; // perform

case WCR_RECOGNAME:
lstrncpy((LPSTR)lParam, szID, wParam);
break;

case WCR_DEFAULT: // Can't be system default

case WCR_QUERY: // Does not support config
dialog

case WCR_QUERYLANGUAGE: // Does not support any language
iRet = FALSE;
break;

case WCR_PWVERSION:
case WCR_VERSION:

iRet = 0x0002; // Recognizer version 2.0
break;

default:

iRet = FALSE; // Anything else is
unsupported

break;
}
return iRet;

}
For a complete list of WCR_ subfunctions, refer to the reference section for ConfigRecognizer in
Chapter 10.

When the last client application unloads a recognizer, the UninstallRecognizer function calls the
recognizer's ConfigRecognizer function with the command WCR_CLOSERECOGNIZER. This informs
the recognizer that it is being unloaded. The previous code takes no action for
WCR_CLOSERECOGNIZER because in SREC, memory allocations come from the local heap. As with
any Windows-based program, a DLL's heap resides in its data segment. When Windows unloads a DLL,
it automatically returns the entire data segment to the memory pool.

However, unloading SREC does not destroy its internal HPENDATA object. HPENDATA blocks occupy
global heap space. If the client application terminates or unloads SREC without first destroying all HRC
objects created by SREC, the corresponding HPENDATA blocks are left orphaned in memory. A
recognizer more intelligent than SREC should maintain a count of active HPENDATA allocations and free
any that remain before terminating.

A recognizer's WEP routine also receives control when Windows unloads the recognizer. Developers
should note a subtle difference between handling cleanup chores in ConfigRecognizer and in WEP.
When the former executes in response to the WCR_CLOSERECOGNIZER subfunction, the client is still
active. However, the WEP routine cannot safely make the same assumption when it executes.
ConfigRecognizer can therefore conceivably post a message to the client or perform some other action
that relies on an active recipient.

The disadvantage of ConfigRecognizer is that the recognizer cannot be certain the function will execute
because the client might not call UninstallRecognizer. Since the WEP function is guaranteed to execute
when Windows unloads the recognizer, essential cleanup duties, such as unhooking interrupts, should be
handled in WEP.

SREC Recognition Functions
This section takes a brief look at some of SREC's exported recognition functions, including
CreateCompatibleHRC, ProcessHRC, and CreatePenDataHRC. The code uses the macro

#define lpHRC ((LPHRCinternal) hrc)

to represent a far pointer to the HRC object.

CreateCompatibleHRC
The CreateCompatibleHRC function allocates an HRCinternal structure in the local heap, creates an
HPENDATA block for the pen data, and returns a far pointer to the structure. The LPTR argument forces
LocalAlloc to return a far pointer to the allocation instead of a memory handle. This far pointer serves as
SREC's HRC handle.

Since the HRC has no configurable elements, SREC ignores any template HRC provided in the first
parameter.

HRC WINAPI CreateCompatibleHRC(HRC hrcTemplate, HREC hrec)
{

HRC hrc;

hrc = (HRC) LocalAlloc(LPTR, sizeof(HRCinternal));
if (hrc)
{

lpHRC->hrec = hrec;
lpHRC->hpendata = CreatePenData(NULL, 0, PDTS_HIENGLISH, 0);
if (lpHRC->hpendata)

return (hrc);
}
LocalFree((HLOCAL) hrc); // If error, free allocation
return NULL; // and return NULL

}
ProcessHRC
The most interesting feature of SREC's ProcessHRC function is the way it sets a time limit for
processing. If called with a limit of PH_MIN or PH_DEFAULT, ProcessHRC passes the address of a
callback function to SetTimer. When the specified time-out period elapses, the callback function receives
control and sets a global flag called vfOutOfTime.

A recognizer can use this technique to ensure that it does not overrun a specified time limit. Its internal
processing functions should check the vfOutOfTime flag regularly and, if it is set, terminate immediately.
In this case, ProcessHRC returns a value of HRCR_INCOMPLETE to tell the caller recognition has not
yet finished.

int WINAPI ProcessHRC(HRC hrc, DWORD dwTimeMax)
{
 UINT idTimer, uTime;
 int iRet;

vfOutOfTime = FALSE; // Initialize time-out
flag

if (dwTimeMax != PH_MAX) // If time limit
specified ...

{
uTime = (dwTimeMax == PH_MIN) ? 50 : 200;

idTimer = SetTimer(NULL, NULL, uTime, (TIMERPROC) TimerProc);
iRet = GetSYG(hrc); // Quit if out of time
KillTimer(NULL, idTimer);

}
else

iRet = GetSYG(hrc); // Don't quit until finished

return (iRet);
}

VOID CALLBACK TimerProc(HWND hwnd, UINT ms, UINT iId, DWORD dwTm)
{

vfOutOfTime = TRUE;
}

CreatePenDataHRC
SREC keeps an HPENDATA handle in its HRC structure. Because the AddPenInputHRC function has
already stored pen input in the internal HPENDATA block, CreatePenDataHRC simply duplicates the
block.

HPENDATA WINAPI CreatePenDataHRC(HRC hrc)
{

if (hrc)
return (DuplicatePenData(lpHRC->hpendata, 0));

else
return NULL;

}

Summary of the Pen Application
Programming Interface

This chapter summarizes the pen services by listing them according to category. The lists complement
the detailed descriptions of functions, structures, messages, and constants in the reference chapters that
follow this chapter. The lists let you quickly identify those services that pertain to your application, then
refer to the reference chapters for detailed information.

The "Pen Kernel Functions" section is of interest to developers who want to write applications for
Microsoft Windows 95 that use ink data without the presence of pen hardware.

Pen API Functions
The Pen Application Programming Interface (API) provides functions that can be divided into 10 broad
categories. The following table describes the 10 categories. Other tables list the functions within each
category.

Function category Description
System and
hardware

Provide information about pen hardware and
current system assumptions.

Display Display ink data, get screen information.
Pen data Collect, copy, move, and delete data in an

HPENDATA object.
Recognition Recognize handwritten characters.
Symbol manipulation Collect and convert symbols returned from a

recognizer.
Time intervals Manipulate time intervals associated with pen

strokes.
Compression Reduce the size of an HPENDATA object.
Utility Miscellaneous utility services provided by the

system.
Hook Program hooks to monitor inking or

recognition.
Obsolete Obsolete functions of version 1.0 maintained

by version 2.0 only for compatibility reasons.

List of Pen API Functions
The following tables list by category all functions in version 2.0 of the Pen API. Functions appear in
alphabetical order within each category, together with a brief description.

System and hardware
functions

Description

GetPenAsyncState Gets state of pen barrel button.
GetPenMiscInfo Gets current system settings.
GetVersionPenWin Gets the Pen API version number.
SetPenMiscInfo Sets system defaults and assumptions.
UpdatePenInfo Called by the pen driver to notify the

system of a change in the driver
configuration.

Display functions Description
CreatePenDataRegion Returns a screen region that contains

the points of an HPENDATA object.
DrawPenDataEx Enhanced version of DrawPenData.
DrawPenDataFmt Default version of DrawPenDataEx.
RedisplayPenData Displays collected pen data exactly as

originally drawn.
ShowKeyboard Displays or hides the on-screen

keyboard.
StartInking Begins the process of leaving a visible

ink trail
as the pen moves. See the descriptions
of StartPenInput and
DoDefaultPenInput.

StopInking Stops the inking process begun by a
call to StartInking.

Pen data functions Description
AddPenDataHRC Adds an HPENDATA object to an HRC.
AddPointsPenData Adds new points and original equipment

manufacturer (OEM) data to an existing
HPENDATA object.

CreatePenData Allocates memory for a new
HPENDATA object and initializes its
header.

CreatePenDataEx Enhanced version of CreatePenData.
CreatePenDataHRC Returns handle to HPENDATA object

associated with an HRC.
DestroyPenData Frees memory occupied by an

HPENDATA memory block.
DuplicatePenData Clones an existing HPENDATA object.
ExtractPenDataPoints Copies or removes points from a stroke.
ExtractPenDataStrokes Copies or removes selected strokes,

optionally creating a new HPENDATA
object from the copied strokes.

GetPenDataAttributes Retrieves information about an
HPENDATA object.

GetPenDataInfo Gets status information for an
HPENDATA object.

GetPointsFromPenData Returns an array of points from an
HPENDATA object.

GetStrokeAttributes Retrieves information about a stroke.
GetStrokeTableAttributes Retrieves information about a stroke's

class.
The class is an entry in a table stored in
the PENDATAHEADER structure.

InsertPenData Combines two HPENDATA blocks.
InsertPenDataPoints Inserts points into a stroke in an

HPENDATA object.
InsertPenDataStroke Inserts data for a new stroke into an

existing HPENDATA object.
OffsetPenData Offsets pen data points by a specified

amount.
PenDataFromBuffer Reverse of PenDataToBuffer, which

must be called first. Creates an
HPENDATA block and writes the buffer
back into it.

PenDataToBuffer Serializes the contents of an
HPENDATA block to a buffer.

RemovePenDataStrokes Removes specified strokes from an
HPENDATA object.

ResizePenData Scales ink data to fit a specified
rectangle.

SetStrokeAttributes Sets attributes of a stroke. Reverse of
GetStrokeAttributes.

SetStrokeTableAttributes Sets attributes for a stroke's class.
Reverse of GetStrokeTableAttributes.

Recognition functions Description
AddPenInputHRC Adds raw pen input to an HRC object.
AddWordsHWL Adds words to a word list.
ConfigRecognizer System access to recognizer

configuration. Applications should not
call this function.

CreateCompatibleHRC Creates an empty HRC object.
CreateHWL Creates a word list.
DestroyHRC Destroys a recognizer's recognition

context object.
DestroyHRCRESULT Destroys a recognizer's results object.
DestroyHWL Destroys the word list handle created

by CreateHWL and frees its memory.
EnableGestureSetHRC Enables or disables recognition of

specified gestures.
EnableSystemDictionaryH
RC

Specifies whether a recognizer should
use its dictionary.

EndPenInputHRC Informs a recognizer that the input
session has ended.

GetAlphabetHRC Retrieves the current alphabet from a
recognizer.

GetAlphabetPriorityHRC Retrieves the current alphabet priority
from a recognizer.

GetAlternateWordsHRCRE
SULT

Gets alternative guesses made by a
recognizer.

GetBoxMappingHRCRESU
LT

Retrieves from a recognizer the
locations of a range of symbols in
boxes.

GetBoxResultsHRC Gets recognition results for a range of
boxes.

GetGuideHRC Gets a copy of the GUIDE structure (if
any) in an HRC object.

GetHotspotsHRCRESULT Returns the hot spots for a specified
gesture.

GetHRECFromHRC Gets module handle of recognizer from
an HRC.

GetMaxResultsHRC Gets the maximum number of guesses
a recognizer can make.

GetResultsHRC Retrieves an HRCRESULT object from
recognizer containing recognition
results.

GetWordlistCoercionHRC Gets the current degree of influence a
word list or dictionary has on
recognition confidence levels.

GetWordlistHRC Gets a word list from an HRC object.
InstallRecognizer Loads a specified recognizer.
ProcessHRC Tells recognizer to process input for a

given period of time.
ReadHWL Reads a word list from a file.
SetAlphabetHRC Specifies the alphabet for a recognition

session.
SetAlphabetPriorityHRC Specifies alphabet priority for a session.
SetBoxAlphabetHRC Specifies the alphabet for a range of

boxes.
SetGuideHRC Specifies guides for an HRC.
SetMaxResultsHRC Sets the maximum number of guesses

a recognizer can make.
SetWordlistCoercionHRC Sets the degree of influence a word list

or dictionary has on recognition
confidence levels.

SetWordlistHRC Identifies a word list for an HRC object.
TrainHREC Passes ink and correct interpretations

to recognizer for training.
UninstallRecognizer Unloads a specified recognizer.
WriteHWL Writes a word list to a file.

Symbol manipulation Description

functions
CharacterToSymbol Converts an ANSI string to an array of

symbol values.
EnumSymbols Enumerates symbol strings in a symbol

graph.
FirstSymbolFromGraph Returns the array of symbols that is the

most likely interpretation of a specific
symbol graph.

GetSymbolCount Returns the number of symbol strings
contained in the symbol graph.

GetSymbolCountHRCRES
ULT

Gets the number of symbol values in
results.

GetSymbolMaxLength Gets the length of the longest symbol
string contained in the symbol graph.

GetSymbolsHRCRESULT Gets symbol values of recognition
results.

SymbolToCharacter Converts an array of symbols to an
ANSI string.

Time interval functions Description
AddInksetInterval Adds an INTERVAL structure to an

existing HINKSET object.
CreateInkset Creates an empty inkset into which

intervals can be added with the
AddInksetInterval function.

CreateInksetHRCRESULT Retrieves the intervals for a specified
series of symbols returned by the
recognizer.

DestroyInkset Frees memory occupied by an inkset
and invalidates the HINKSET handle.

GetInksetInterval Copies a series of intervals from an
HINKSET object to an array of
INTERVAL structures.

GetInksetIntervalCount Returns the number of intervals in an
HINKSET object.

Compression functions Description
CompressPenData Compresses and uncompresses data.
DPtoTP Converts display coordinates to tablet

coordinates.
MetricScalePenData Converts pen data points to one of the

supported metric modes.
TPtoDP Converts tablet coordinates to display

coordinates.
TrimPenData Removes selected data from an

HPENDATA block.

Utility functions Description
AtomicVirtualEvent Blocks out physical pen events while

posting virtual events.
BoundingRectFromPoints Returns the bounding rectangle of an

array of points.
ConfigHREC Configures or queries recognizer

options.
CorrectWriting Displays lens or Correct Text dialog box

to allow user to correct text.
CorrectWritingEx Sends text to the CorrectText dialog box

to allow the user to edit text using the
Japanese Data Input Window.
(Japanese version only.)

DoDefaultPenInput Runs high-level recognition/data
collection. Internally calls
StartPenInput, StartInking,
StopPenInput, and StopInking.

GetPenAppFlags Returns the task flags created by
SetPenAppFlags.

GetPenInput Collects input data as the user writes.
GetPenResource Retrieves a copy of the pen services

resource. (Japanese version only.)
HitTestPenData Determines whether a given point lies

near a stroke.
IsPenEvent Determines whether a

WM_LBUTTONDOWN message is
generated by a mouse or pen device.

KKConvert (Japanese version only.) Activates the
Kana-to-Kanji converter.

PeekPenInput Retrieves information about a pen
packet in the pen input queue. This
function is similar to GetPenInput, but
does not remove the pen packet from
the queue.

PostVirtualKeyEvent Simulates a keystroke by sending a
virtual key code to Windows.

PostVirtualMouseEvent Simulates mouse activity by sending a
virtual mouse event to Windows.

SetPenAppFlags Sets pen flags for the application that
are used globally by the pen services.

StartPenInput Begins collecting into an internal buffer
ink
data generated by the moving pen. See
also
the descriptions of .
DoDefaultPenInput and StartInking.

StopPenInput Ends collection process begun by a call
to StartPenInput.

TargetPoints Determines the logical recipient of data
among several targets.

Hook functions Description
SetPenHook Sets or removes a hook for capturing

low-level pen events.
SetResultsHookHREC Sets a hook for recognition results.

UnhookResultsHookHREC Unhooks a hook set by
SetResultsHookHREC.

Obsolete functions Description
BeginEnumStrokes Locks an HPENDATA memory block in

global memory in preparation for
reading.

CloseRecognizer Called by the system when uninstalling
a
recognizer. Subfunction has been
superseded
by WCR_CLOSERECOGNIZER in
ConfigRecognizer.

CompactPenData Data compression function superseded
by CompressPenData and
TrimPenData.

DictionarySearch Searches dictionary for a word or
phrase.

DrawPenData Displays ink according to a display
context HDC. Superseded by
DrawPenDataEx.

EmulatePen Emulates a pen system.
EndEnumStrokes Unlocks an HPENDATA memory block.

Required after calling
BeginEnumStrokes.

GetGlobalRC Retrieves a copy of the current system
RC structure.

GetPenDataStroke Gets the raw data for a stroke stored in
an HPENDATA memory block.

GetPenHwEventData Retrieves a range of pen event data
from the internal pen data buffer.

InitRC Initializes recognition context for the
recognizer. Only for compatibility with
version 1.0.

InitRecognizer Called by the system when it installs a
recognizer. Superseded by
WCR_INITRECOGNIZER subfunction
in ConfigRecognizer.

IsPenAware Checks application's capability to
handle pen events. Superseded by
GetPenAppFlags.

ProcessWriting Runs high-level recognition services.
Superseded by DoDefaultPenInput.

Recognize Begins recognition for a version 1.0
recognizer.

RecognizeData Delayed recognition for a version 1.0
recognizer.

RegisterPenApp Identifies an application to the system
as pen-aware. Superseded by
SetPenAppFlags.

SetGlobalRC Sets default settings for the specified
recognition context. This function

should be called only from the pen
Control Panel program.

SetRecogHook Installs and removes a recognition hook
in version 1.0. Superseded by
SetResultsHookHREC.

TrainContext Passes to the recognizer a previous
recognition result that may contain
errors along with the required
interpretation.

TrainContextInternal Called by system when an application
calls TrainContext.

TrainInk Informs the recognizer at the DLL
recognition level that the raw data input
represents the symbol value results.

TrainInkInternal Called by system when an application
calls TrainInk.

Pen Kernel Functions
As described in Chapter 1, the services of the Pen API are provided by the libraries PENWIN.DLL and
PKPD.DLL. PENWIN.DLL is provided by original equipment manufacturers and exists only on systems
with attached pen hardware. The ink management services of PKPD.DLL, however, are part of Windows
95. This allows an application to display and manipulate ink data with any installation of Windows 95,
even one without pen hardware.

The following table lists the 41 Pen API functions exported by PKPD. If an application detects Windows
95 without PENWIN.DLL, it can still use these functions to display, examine, alter, and compress existing
ink data.

AddInksetInterval

AddPointsPenData

BeginEnumStrokes

BoundingRectFromPoints

CompactPenData

CompressPenData

CreateInkset

CreatePenData

CreatePenDataEx

CreatePenDataRegion

DestroyInkset

DestroyPenData

DrawPenData

DrawPenDataEx

DrawPenDataFmt

DuplicatePenData

EndEnumStrokes

ExtractPenDataPoints

ExtractPenDataStrokes

GetInksetInterval

GetInksetIntervalCount

GetPenDataAttributes

GetPenDataInfo

GetPenDataStroke

GetPointsFromPenData

GetStrokeAttributes

GetStrokeTableAttributes

HitTestPenData

InsertPenData

InsertPenDataPoints

InsertPenDataStroke

MetricScalePenData

OffsetPenData

PenDataFromBuffer

PenDataToBuffer

RedisplayPenData

RemovePenDataStrokes

ResizePenData

SetStrokeAttributes

SetStrokeTableAttributes

TrimPenData

Pen API Structures
The Pen API defines 31 structures in the following categories:

Structure category Description
System and hardware Information about the system and pen

hardware.
Display Structures that affect display.
Guides and controls Structures that affect boxes, guides,

and controls.
Recognition Pertain to the process and results of

recognition.
Pen data Information about points and strokes.
Target Pertain to target windows.
Time intervals Stroke interval information.

The following tables list the structures of the Pen API by category. For structures new to version 2.0, the
first member is cbSize, which contains the structure's size in bytes.

Important Before using a version 2.0 structure, an application must initialize its cbSize mem-ber
with the value sizeof(structname), where structname represents the name of the structure. For
example:

INKINGINFO inkinginfo;
inkinginfo.cbSize = sizeof(INKINGINFO);

or

INKINGINFO inkinginfo = {sizeof(INKINGINFO)};

System and hardware
structures

Description

CALBSTRUCT Pen calibration information.
OEMPENINFO Tablet hardware information provided

by original equipment manufacturer.
PDEVENT Provides information about the pen

device associated with an
IN_PDEVENT notification.

PENINFO Pen or tablet hardware information.

Display structures Description
ANIMATEINFO Animation information used by the

DrawPenDataEx function.
CWX Specifies optional parameters for the

CorrectWritingEx function. (Japanese
version only.)

INKINGINFO Specifies where and how to display ink.
PCMINFO Specifies screen areas that affect pen

data collection.
PENTIP Width and color of ink trail left by pen.
RECTOFS Offsets of inflated or deflated writing

area.
SKBINFO Information about on-screen keyboard.

Guide and control
structures

Description

BOXEDITINFO Size information for boxed edit control.
BOXLAYOUT Layout of boxed edit control.
CTLINITBEDIT Initialization for boxed edit control.
CTLINITHEDIT Initialization for handwriting edit control.
CTLINITIEDIT Initialization for ink edit control.
GUIDE Characteristics of handwriting guides.

Recognition structures Description
BOXRESULTS Results returned from the

GetBoxResultsHRC function.
RC Various information about the

recognition context used by version 1.0
recognition functions.

RCRESULT Results of recognition initiated through
a version 1.0 recognition function.

SYC Symbol correspondence linking ink
strokes with a particular recognized
symbol.

SYE Symbol element containing a
recognized symbol and its confidence
level.

SYG Symbol graph containing SYC and SYE
struc-tures that together specify all
guesses a recog-nizer has made.

Pen data structures Description
PENDATAHEADER Header structure of an HPENDATA

memory block.
PENPACKET Data sent by pen driver to inform

system of pen activity.
STRKFMT Attributes of a stroke.
STROKEINFO Information about points making up a

single stroke.

Time interval structures Description
ABSTIME Time of a pen data point in seconds and

milliseconds.
INTERVAL Start and end times for a set of data

points.

Target structures Description
INPPARAMS Describes a set of targets.
TARGET Information about a single target

window.
TARGINFO Information about a set of targets.

Pen API Messages
The Pen API defines message and submessage values identified by the following prefixes:

Message prefix Description
CTLINIT_ Submessages for WM_CTLINIT.
DRV_ Messages from the pen hardware

driver.
HE_ Submessages of WM_PENCTL for

hedit and bedit controls.
HN_ Notification messages for hedit and

bedit controls.
IE_ Messages for iedit control.
IN_ Notification messages for iedit control.
PE_ Submessages for WM_PENEVENT.
PMSC_ Submessages for WM_PENMISC.
SKB_ Submessages for WM_SKB.
SKN_ Notifications for WM_SKB.
WM_ Window messages for pen-based

applications.

Pen API Constants
The PENWIN.H header file defines manifest constants for the Pen API, most of which begin with prefixes
of two or more letters to indicate their purpose. The following table describes the prefixes of the Pen API
constants:

Constant
prefix

Description

AI_ Options for AnimateProc function.
ALC_ Alphabet codes.
BEI_ Information for bedit control.
BESC_ Size of bedit control.
BXD_ Define dimensions of bedit control (Roman).
BXDK_ Define dimensions of bedit control (Japanese).
BXS_ Styles for bedit controls.
CMPD_ Options for CompressPenData function.
COLOR_ Input method editor colors for bedit control.
CPD_ Storage codes for CreatePenDataEx.
CPDR_ Types for CreatePenDataRegion.
CWR_ Options for CorrectWriting.
DIRQ_ Dictionary request codes.
DPD_ Flags for DrawPenDataEx function.
EPDP_ Options for ExtractPenDataPoints.
EPDS_ Options for ExtractPenDataStrokes.
GGRC_ Options for GetGlobalRC.
GPA_ Options for GetPenDataAttributes.
GRH_ Return types from GetResultsHRC.
GSA_ Options for GetStrokeAttributes.
GST_ Codes for EnableGestureSetHRC.
HEKK_ Subfunctions for kana-kanji conversions.
HEP_ Subfunctions for HE_STOPINKMODE.
HKP_ Options for SetPenHook.
HRCR_ Return values from recognition functions.
IDC_ Cursor types defined by pen display driver.
IEB_ Codes for background in iedit controls.
IEDO_ Codes for draw option IE_ messages.
IEM_ Menu codes for IE_ iedit control messages.
IEMODE_ Codes for IE_SETMODE message.
IEN_ Codes for IE_SETNOTIFY message.
IER_ Codes for stroke format IE_ messages.
IEREC_ Codes for recognition IE_ messages.
IES_ Style attributes for iedit control.
IESEC_ Codes for security IE_ messages.
IESF_ Flags for STRKFMT structure.
ISR_ Return values from inkset functions.
OBM_ Public bitmaps.

PCM_ Termination conditions for pen collection mode.
PCMR_ Return values from data collection functions.
PDC_ Pen device capability codes.
PDK_ Pen driver state bits for GetPenAsyncState function.
PDR_ General pen data return values.
PDT_ Pen driver values specific to original equipment

manufacturer.
PDTS_ Trim options for MetricScalePenData.
PDTT_ Trim options for CompactPenData.
PENTIP_ Values for PENTIP structure.
PHW_ Report codes for CreatePenDataEx.
PII_ Flags for INKINGINFO structure.
PMI_ Codes for GetPenMiscInfo, SetPenMiscInfo, and

WM_PENMISCINFO.
PMSCL_ lParam values for PMSC_ constants.
PMSCR_ Return values for PMSC_TARGETING subfunction.
PWF_ Subcodes of PMI_SYSFLAGS.
RC_ Values for RC structure.
RCD_ Indicates writing direction (left to right, top down, etc.).
RCO_ Recognition options for RC structure.
RCOR_ Tablet orientation codes.
RCP_ User preference codes.
RCRT_ Values for wResultsType member of RCRESULT

structure.
REC_ Return codes from a version 1.0 recognizer.
RHH_ Hook types for ResultsHookHREC.
SGRC_ Options for SetGlobalRC.
SHC_ Codes for word-list coercion functions.
SKB_ Flag values for ShowKeyboard.
SSA_ Options for SetStrokeAttributes.
SSH_ Indicates writing direction (left to right, etc.).
SYV_ Codes for symbol characters, shapes, and gestures.
TPD_ Options for TrimPenData function.
TPT_ Flags for TARGINFO structure.
VWM_ Flag values for PostVirtualMouseEvent.
WCR_ Configuration options for ConfigHREC and

ConfigRecognizer.
WLT_ Word list types.

Pen Application Programming
Interface Functions

This chapter provides a reference listing of the pen API functions, arranged in alphabetical order. Each
entry describes a separate function organized under the following margin headings:

Margin heading Description
Parameters List of function parameters
Return Value Possible return values and their

meanings
Comments Additional information about the

function
See Also Cross-reference to related API

services

Next to each function name is a number that identifies the pen API version that supports the function ¾ for
example, 1.0 or 2.0.

The names of application callback functions appear in italics to indicate the names are placeholders.
Callback functions can have any name.

Constants that pertain only to a specific function are listed in this chapter in the reference entry for that
function. Generally, constants that pertain to two or more API services appear in Chapter 13, "Pen
Application Programming Interface Constants."

AddInksetInterval       

2.0

Merges an interval into an inkset.

BOOL AddInksetInterval(HINKSET hinkset, LPINTERVAL lpiNew)

Parameters
hinkset

Handle to an inkset.
lpiNew

Address of an INTERVAL structure.

Return Value
Returns TRUE if successful; otherwise FALSE.

Comments
The inkset is reallocated to a larger size by this function. The interval merges with any existing intervals,
changing the interval only when required. For example, if the new interval is a subset of an existing one,
there will be no change. Similarly, if the new interval overlaps an existing one, the union is formed. The
maximum number of intervals allowed is defined to be (65536 - sizeof(INKSET)) / sizeof(INTERVAL),
which evaluates to 5460.

The ending time of the new interval must be greater than or equal to the beginning time. If the interval has
a duration of 0, AddInksetInterval does nothing, but returns TRUE.

An inkset formed using this function is guaranteed to have the intervals in ascending chronological order.

See Also
GetInksetInterval, INTERVAL

AddPenDataHRC       

2.0

Adds an HPENDATA object to an HRC object for recognition.

int AddPenDataHRC(HRC hrc, HPENDATA hpndt)

Parameters
hrc

Handle to the HRC object.
hpndt

Handle to the HPENDATA object.

Return Value
Returns HRCR_OK if successful; otherwise, returns one of the following negative values:

Constant Description
HRCR_ERROR Invalid parameter or other error.
HRCR_MEMERR Insufficient memory.
HRCR_INVALIDPNDT Invalid pen data object.

Comments
Before terminating, the application must free the pen data, using DestroyPenData. Because the
recognizer copies any data it requires, the recognizer does not affect the original data.

Calling this function is equivalent to adding data to the recognition context by walking the pen data
strokes from beginning to end in stroke order. (Note that the stroke order may not necessarily be in
chronological order if insertions have been made.)

A recognizer is not required to use or maintain OEM data; that is, a recognizer may choose to ignore
some or all of the OEM data it receives from AddPenDataHRC. This means that the HPENDATA object
that the recognizer returns through its CreatePenDataHRC function may differ from hpndt in its OEM
data.

See Also
CreatePenData, AddPenInputHRC

AddPenInputHRC       

2.0

Adds pen data to an HRC object for recognition. A recognizer must export this function.

int AddPenInputHRC(HRC hrc, LPPOINT lppt, LPVOID lpvOem, UINT fuOem, LPSTROKEINFO lpsi)

Parameters
hrc

Handle to the HRC object.
lppt

Address of an array of POINT structures.
lpvOem

Address of a buffer containing OEM data, or NULL if there is no OEM data.
fuOem

Flags to specify which OEM data is valid.
lpsi

Address of a STROKEINFO structure.

Return Value
Returns HRCR_OK if successful; otherwise, returns one of the following negative values:

Constant Description
HRCR_ERROR Invalid parameter or other error.
HRCR_MEMERR Insufficient memory.

Comments
A recognizer is not required to use or maintain OEM data; that is, a recognizer may choose to ignore
some or all of the OEM data it receives from AddPenInputHRC. This means that the HPENDATA object
that the recognizer returns through its CreatePenDataHRC function may differ from hpndt in its OEM
data.

See Also
GetPenInput, GetPenDataStroke

AddPointsPenData       

1.0 2.0

Adds a set of data points to the pen data object.

HPENDATA AddPointsPenData(HPENDATA hpendata, LPPOINT lppt, LPVOID lpvOem,
LPSTROKEINFO lpsiNew)

Parameters
hpendata

Handle to a pen data object.
lppt

Address of an array of POINT structures containing new data points to be added to the pen data.
Zero points can be added to force a change of pen state or to set a new pen state.

lpvOem

OEM data. Can be set to NULL if there is no additional OEM data. The pen data header determines
how the OEM data is interpreted.

lpsiNew

Address of a STROKEINFO structure for new stroke data. Contains the count of points from lppt to be
added.

Return Value
Returns a handle to the pen data object. Normally, this is the same handle originally passed to the
function. NULL is returned on error. The size of hpendata is limited to 64K.

Comments
A call to GetPenHwEventData or GetPenInput gets the lpsiNew and lpvOem values. A subsequent call
to AddPointsPenData appends the set of points to the HPENDATA memory block identified by
hpendata. The lpsiNew argument points to a STROKEINFO structure that describes the new points, and
lpvOem points to the corresponding OEM data (if any) to be added along with the points.

The STROKEINFO structure indicates the pen state of the new points¾that is, whether the pen is up or
down. To avoid unnecessarily creating new strokes in the HPENDATA block, AddPointsPenData
compares the pen state of the new points with the pen state of the last stroke in the HPENDATA block. If
the new points have the same pen state as the last stroke, the function appends the points to the last
stroke and updates the last STROKEINFO structure within the HPENDATA block. If the new points have
a different pen state, AddPointsPenData appends them to the HPENDATA block as a new stroke, along
with the STROKEINFO structure pointed to by lpsiNew.

AddPointsPenData does not scale the data points. The calling application must ensure that the added
data points have the same scale as the rest of the HPENDATA block.

See Also
CreatePenData, GetPenHwEventData

AddWordsHWL       

2.0

Adds words to a word list.

int AddWordsHWL(HWL hwl, LPSTR lpsz, UINT uType)

Parameters
hwl

Handle to a word list, or the constant HWL_SYSTEM for the recognizer's master word list.
lpsz

A pointer to a source of words, depending on the uType parameter.
uType

Word list type. This can be one of the following values:
Constant Description
WLT_STRING lpsz points to a single null-

terminated character string in
memory.

WLT_STRINGTABLE lpsz points to an array of null-
terminated character strings in
memory. The list is terminated
by two null characters.

WLT_WORDLIST lpsz is the handle of a
previously created word list,
cast as LPSTR.

Return Value
Returns HRCR_OK if successful; otherwise, returns one of the following negative values:

Constant Description
HRCR_ERROR Invalid parameter or other error.
HRCR_MEMERR Insufficient memory.

Comments
If a user wants to add a word to the system word list, which is available whenever the system dictionary is
enabled (see EnableSystemDictionaryHRC), then hwl should be set to the predefined constant
HWL_SYSTEM. Words that are not normally found in a dictionary, such as a person's name, can be
added to the system word list. How this list is implemented, its size, or if it even exists, depends on the
recognizer. A typical recognizer might maintain a thousand-word list, replacing random entries on
overflow.

The HWL_SYSTEM constant cannot be used in any of the other word-list functions. For example, it is not
possible to destroy the system word list with the DestroyHWL function.

For a description of word lists and how a recognizer uses them, see "Configuring the HRC" in Chapter 5,
"The Recognition Process."

See Also
CreateHWL, EnableSystemDictionaryHRC

AnimateProc
2.0

The AnimateProc function is an application-defined callback function that provides information to
DrawPenDataEx on a periodic basis. The name AnimateProc serves only as a placeholder; the function
can have any name.

BOOL CALLBACK AnimateProc(HPENDATA hpndt, UINT iStrk, UINT cPnt, UINT FAR * lpuSpeedPct,
LPARAM lParam)

Parameters
hpndt

Handle to the pen data currently being drawn.
iStrk

Zero-based index to the stroke being drawn, or about to be drawn.
cPnt

Count of points already drawn in this stroke.
lpuSpeedPct

Address of the speed-percent value.
lParam

Application-specific data passed to the callback. This value is specified in ANIMATEINFO.

Return Value
The callback function must return TRUE to continue drawing the pen data. Returning FALSE stops
animation immediately.

Comments
One of the parameters of DrawPenDataEx provides the address of this callback function. The application
must create an instance of this function using the MakeProcInstance function, and ensure that it is
exported in the module-definition (.DEF) file.

The application can monitor the state of animation or provide the user with an opportunity to change the
speed of animation, including pausing it, using the value addressed by lpuSpeedPct.

The application can also pass application-specific information to the callback in lParam. For example, a
handle to the DC (device context) can be passed.

Callbacks are made at the beginning of the stroke or time interval, before any drawing is done. However,
if AI_SKIPUPSTROKES is specified, a callback is not made before up strokes.

See Also
DrawPenDataEx, ANIMATEINFO

AtomicVirtualEvent       

1.0 2.0

Locks out pen packets.

void AtomicVirtualEvent(BOOL fBegin)

Parameters
fBegin

Flag for beginning or ending lockout. TRUE begins lockout, FALSE ends it.

Return Value
This function does not return a value.

Comments
AtomicVirtualEvent is used by the Pen Palette or a similar virtual-keyboard program to lock out pen
packets while the application is posting simulated key or mouse events.

Calling AtomicVirtualEvent with a TRUE value blocks input from physical devices until they are freed
with a call specifying FALSE. Applications should end the lockout as quickly as possible.

An interruptable thread should not call AtomicVirtualEvent.

Example
The following code fragment posts a mouse click:

AtomicVirtualEvent(TRUE);
PostVirtualMouseEvent(VWM_MOUSELEFTDOWN, xPos, yPos);
PostVirtualMouseEvent(VWM_MOUSEMOVE, xPos, yPos);
PostVirtualMouseEvent(VWM_MOUSELEFTUP, xPos, yPos);
AtomicVirtualEvent(FALSE);

See Also

PostVirtualKeyEvent, PostVirtualMouseEvent

BeginEnumStrokes       

1.0 2.0

Locks a pen data block in memory in preparation for enumerating strokes.

Note This function is provided only for compatibility with version 1.0 of the Pen API, and will not be
supported in future versions.

LPPENDATA BeginEnumStrokes(HPENDATA hpendata)

Parameters
hpendata

Handle to an HPENDATA object.

Return Value
Returns a pointer to the locked pen data if successful. Returns NULL if hpendata is compressed or if the
handle cannot be locked.

Comments
BeginEnumStrokes calls the GlobalLock function internally, returning a far pointer to the memory block
in the global heap. This serves to lock the data in preparation for direct reading or calling
GetPenDataStroke. The return value from BeginEnumStrokes is used as an argument for
GetPenDataStroke. After calling BeginEnumStrokes to lock data, an application must unlock the data
when finished by calling EndEnumStrokes.

An application should never modify data directly within an HPENDATA block. Doing so can invalidate
other information in the block. To modify an HPENDATA block, use one of the Pen API functions listed in
Chapter 4, "The Inking Process."

See Also
EndEnumStrokes, GetPenDataStroke

BoundingRectFromPoints       

1.0 2.0

Calculates a rectangle that bounds a range of points.

void BoundingRectFromPoints(LPPOINT lppt, UINT cPt, LPRECT lprect)

Parameters
lppt

Address of an array of POINT structures.
cPt

Number of POINT structures in the array. This parameter can be 0.
lprect

Address of a RECT structure that contains the bounding rectangle when the function returns.

Return Value
This function does not return a value.

Comments
The bounding rectangle is empty at [0,0] if there are no points. For a single point, the rectangle is empty
at that point.

CharacterToSymbol       

1.0 2.0

Converts an ANSI string to an array of SYV_ symbol values.

int CharacterToSymbol(LPSTR lpstr, int cSyv, LPSYV lpsyv)

Parameters
lpstr

Address of a null-terminated ANSI string to be converted.
cSyv

Maximum number of SYV_ symbols the array lpsyv can hold.
lpsyv

Address of an array of SYV_ symbol values into which CharacterToSymbol places the converted
symbols. The array must be large enough to hold cSyv symbols.

Return Value
Returns the number of characters converted, or -1 if there is an error.

Comments
Conversion proceeds until a null byte is found in lpstr or until lpsyv has been filled with cSyv symbols. A
null byte is converted to SYV_NULL.

See Also
SymbolToCharacter, SYG, SYV_

CompactPenData       

1.0 2.0

Compacts pen data based on specified trim options.

Note This function is provided for compatibility with version 1.0 of the Pen API and will not be
supported in future versions. Use TrimPenData and CompressPenData instead.

HPENDATA CompactPenData(HPENDATA hpndt, UINT fuTrim)

Parameters
hpndt

Handle to a pen data object.
fuTrim

Data-trimming options:
PDTT_DEFAULT

Reallocates memory block to fit the data; does not trim the data. If you call CompactPenData with
this trim option and then call the GlobalSize function with the pen data handle as a parameter, you
can retrieve the size of the pen data.

PDTT_ALL

Removes the PENINFO structure from the header. Discards all data from pen-up points (points
collected when the pen is not in contact with the tablet), and removes OEM data and collinear
points.

PDTT_COLLINEAR

Removes successive identical (coincident) points and collinear points from the pen data. After the
operation is performed, PDTS_NOCOLLINEAR is set in the wPndts member of the
PENDATAHEADER structure. The collinear points can be removed with very little if any loss of
recognition accuracy. If the collinear points are removed before the points are scaled to display
coordinates, there may be a small change in the displayed image.

PDTT_COMPRESS

Compresses the data without losing any information. After the data has been compressed, the
compressed handle to the pen data can be passed as a parameter only to the functions
CompactPenData, GetPenDataInfo, and DuplicatePenData. CompactPenData uses a
"lossless" compression method that retains the ability for an application to recognize the ink after
subsequent decompression. You can use this option with other trim options, including
PDTT_DECOMPRESS. In this case, compression is done after all other options have been
satisfied.

PDTT_DECOMPRESS

Decompresses the data. You can use this option with other trim options, including
PDTT_COMPRESS. In this case, decompression is performed first, followed by any other trim
options specified, and followed by recompression if PDTT_COMPRESS is specified. Since the
compression method used by CompactPenData does not lose information, the data is completely
restored.

PDTT_OEMDATA

Removes all OEM data¾this is data other than coordinates, such as pressure. This option does not
affect delayed recognition unless a recognizer is being used that expressly requires OEM data. For
example, signature recognizers often use pressure information.

PDTT_PENINFO

Removes the PENINFO structure from the header. You can use this option if there is no OEM data
associated with the data points or if the application does not use any of the OEM data. This option
has no effect on the pen data for delayed recognition. Any OEM data present is also removed.

PDTT_UPPOINTS

Removes all data from pen-up points (points collected when the pen is not in contact with the
tablet). This option has no effect on delayed recognition. This option is not usually necessary
because pen-up points are not a part of standard pen data.

Return Value
If successful, CompactPenData returns a handle to a pen data object; otherwise, it returns NULL.
CompactPenData may fail and return NULL in low-memory situations if compression or decompression
is requested.

Comments
The PDTS_ bits are set in the wPndts member of the PENDATAHEADER structure to indicate which
operations have been performed.

See Also
CompressPenData, TrimPenData, CreatePenData, PENINFO, PENDATAHEADER

CompressPenData       

2.0

Compresses or decompresses the data in an HPENDATA object.

int CompressPenData(HPENDATA hpndt, UINT fuFlags, DWORD dwReserved)

Parameters
hpndt

Handle to the HPENDATA object.
fuFlags

Specifies whether to compress or decompress the data, as follows:
Constant Description
CMPD_COMPRESS Compress the pen data.
CMPD_DECOMPRESS Decompress the pen data.

dwReserved

Must be 0.

Return Value
This function returns one of the following:

Constant Description
PDR_OK Successful completion. Redundant

operations, such as compressing an
HPENDATA object that has already been
compressed, are not errors.

PDR_ERROR Illegal parameter or other error.
PDR_MEMERR Memory error.
PDR_PNDTERR Invalid pen data.
PDR_VERSIONERR Could not convert old pen data.

Comments
This function replaces the the version 1.0 Pen API function CompactPenData, which is supported for
compatibility only.

For a discussion of data compression, see "Compressing Pen Data" in Chapter 4, "The Inking Process."

See Also
CompactPenData, TrimPenData

ConfigHREC       

2.0

Allows an application to set or query recognizer-specific values. All calls to ConfigHREC are serviced by
the recognizer's ConfigRecognizer function. In version 2.0 of the Pen API, applications must call
ConfigHREC rather than ConfigRecognizer.

int ConfigHREC(HREC hrec, UINT uSubFunction, WPARAM wParam, LPARAM lParam)

Parameters
hrec

Module handle of the recognizer library. If this value is NULL, the system default recognizer is used.
uSubFunction

Recognizer subfunction identifier. See the "Comments" section below.
wParam

Depends on the value of uSubFunction.
lParam

Address of a buffer. The contents of the buffer depend on the value of uSubFunction.

Return Value
If successful, returns 0 or a positive value as described in the list of uSubfunction constants below;
otherwise, returns one of the following negative values:

Constant Description
HRCR_ERROR Missing recognizer, invalid parameter, or

other error.
HRCR_MEMERR Insufficient memory.

Comments
The uSubFunction parameter contains one of the following WCR_ values that identifies the requested
configuration service:

WCR_CONFIGDIALOG

Instructs the recognizer to open a dialog box to set any recognizer-specific parameters. (This is
analogous to DEVMODE in printer drivers, which is called when a user sets up a printer.) Some
examples of the kind of settings a recognizer might implement are whether or not to allow cursive
input, how much to depend on stroke order, and how rapidly to modify prototypes based on the
user's own style.
The lParam parameter points to the name of the user currently selected in the Control Panel
application. The wParam parameter is used by the recognizer as the parent window for any dialog
boxes it displays. The return value is always TRUE.

WCR_DEFAULT

Returns TRUE if the recognizer is capable of being a default recognizer. A default recognizer must
support the standard character set as well as standard gestures.

WCR_GETALCPRIORITY

Returns the current default alphabet priority being used by the recognizer. The lParam parameter
points to a variable that specifies the alphabet priority as a bitwise-OR combination of ALC_
values. The wParam parameter is not used. This subfunction is used by the system; applications
should instead get alphabet priority by calling GetAlphabetPriorityHRC. The return value is TRUE
if successful.

WCR_GETANSISTATE

Returns TRUE if the recognizer can recognize all of the ANSI character set; otherwise, returns
FALSE or HRCR_ERROR.

WCR_GETDIRECTION

If successful, returns the current writing direction assumed by the recognizer; otherwise, returns
HRCR_ERROR.

WCR_GETHAND

If successful, returns 0 if the user writes with the right hand or nonzero if the user writes with the
left hand; otherwise, returns HRCR_ERROR.

WCR_PRIVATE

Values above WCR_PRIVATE have a meaning dependent on the recognizer.
WCR_PWVERSION

Returns the version number of the Pen API for which this recognizer was created. This value is 2
for the current version.

WCR_QUERY

Returns TRUE if the recognizer supports a configuration dialog box.
WCR_QUERYLANGUAGE

The wParam parameter is not used. The lParam parameter points to a null-terminated language
string. The return value is TRUE if the recognizer supports the language; otherwise, it is FALSE.

WCR_RECOGNAME

Retrieves an identification string from the recognizer. The lParam parameter is treated as a far
pointer to a buffer that is filled with an identification string from the recognizer. The wParam
parameter is the size of the buffer to fill. The identification string is a short description of the
recognizer that Control Panel presents to the user. A sample string is "US English character set,
cursive & print." The return value is always 0.

WCR_SETALCPRIORITY

Sets the current default alphabet priority for the recognizer to the value in lParam. Note that setting
a priority for individual characters is not supported for defaults. The wParam parameter is not used.
This subfunction is used by the system; applications should set priority explicitly in an HRC with the
SetAlphabetPriorityHRC function. The return value is TRUE if successful.

WCR_SETANSISTATE

Sets a flag to enable or disable recognition of the entire ANSI character set. Setting lParam to 1
enables recognition of the entire ANSI set; setting lParam to 0 allows recognition of only English
(ASCII) characters. The wParam parameter is not used.
The WCR_SETANSISTATE subfunction determines the default setting when
CreateCompatibleHRC creates an HRC. An application can explicitly override the setting for the
HRC with the SetInternationalHRC function. The return value is TRUE if successful.

WCR_SETDIRECTION

Sets the current writing direction for the recognizer to the value in lParam, which can be an

appropriate combination of the RCD_ values. The wParam parameter is not used. The return value
is TRUE if successful.

WCR_SETHAND

Sets the current writing hand preference for the recognizer. The lParam parameter is 0 for a right-
handed user or 1 for a left-handed user. The wParam parameter is not used. The return value is
TRUE if successful.

WCR_TRAIN

This subfunction returns TRAIN_NONE if the recognizer does not support training. A return value of
TRAIN_DEFAULT indicates support for the default trainer, including the capability of resetting its
database to the original "factory" setting (see WCR_TRAINSAVE). A return value of
TRAIN_CUSTOM indicates that the recognizer also provides its own custom trainer. A return value
of TRAIN_BOTH indicates support for both kinds of training.

WCR_TRAINMAX

The recognizer returns the maximum number of SYV_ symbol values that it can train for any given
shape.
The recognizer should return 0 if it can train any number of characters. For example, the Microsoft
recognizer can train one character for a shape; a cursive recognizer may allow more.

WCR_TRAINSAVE

The trainer calls the ConfigHREC function with the parameters set to (WCR_TRAINSAVE,
TRAIN_SAVE, 0) when it is time to save the data-base. This happens when the user closes the
trainer. After this call, the recognizer should return TRUE if it can successfully save the database;
otherwise, it should return FALSE.
The trainer calls the function with (WCR_TRAINSAVE, TRAIN_REVERT, 0) before it discards any
changes made to the database that have not yet been saved to disk (that is, revert to saved). This
happens when the user cancels the changes. The recognizer should return TRUE if it is
successful.
The trainer can alternatively call ConfigHREC with (WCR_TRAINSAVE, TRAIN_RESET, 0) to
reset the database to the original "factory" settings. The recognizer should return TRUE if it is
successful.

WCR_TRAINDIRTY

The recognizer returns TRUE if the recognizer needs to save training. The recognizer returns
FALSE if no training occurred, if the recognizer does not use a database for training, if the
recognizer saves as it works, or if the recognizer cannot revert the training.
The hwnd parameter is a handle to the requesting window. The trainer can use this as the parent
window for a dialog box, for example. If there has been a recent recognition, a pointer to it is
passed in the lParam parameter, although this may be NULL.
The format for the WCR_TRAINDIRTY subfunction call is:

ConfigHREC(hrec, WCR_TRAINDIRTY, 0, 0);

WCR_TRAINCUSTOM

If the recognizer returns TRAIN_CUSTOM or TRAIN_BOTH in response to WCR_TRAIN, it will
receive a WCR_TRAINCUSTOM message when it is time to display its own training system.
The format for the WCR_TRAINCUSTOM subfunction call is:

ConfigHREC(hrec, WCR_TRAINCUSTOM, hwnd, lprcresult);

WCR_USERCHANGE

Notifies the recognizer of a change in user. The lParam parameter points to a null-terminated string

containing the user's name. The wParam parameter specifies the required modification:
A wParam value of CRUC_NOTIFY indicates a new user, the name of whom is in the string that
lParam points to.
A wParam value of CRUC_REMOVE indicates that the user identified by lParam should be
removed from the recognizer's user list. If the recognizer has saved any files or settings for the
user, they should be deleted in response to this notification.

WCR_VERSION

Returns the version number. The low-order byte of the return value specifies the major (version)
number. The high-order byte specifies the minor (revision) number.

See Also
ConfigRecognizer, ALC_, SYV_

ConfigRecognizer       

1.0 2.0

Provides system access to the configuration settings of a recognizer. In version 2.0 of the Pen API, only
the pen system can call ConfigRecognizer. Applications must call ConfigHREC to query or set
recognizer configuration values. The system routes ConfigHREC calls to the ConfigRecognizer function
of the appropriate recognizer.

A recognizer must export ConfigRecognizer. The information in this entry is for recognizer developers
only, not application developers.

UINT ConfigRecognizer(UINT uSubFunction, WPARAM wParam, LPARAM lParam)

Parameters
uSubFunction

Recognizer subfunction identifier. See ConfigHREC for descriptions of the WCR_ subfunctions that
ConfigRecognizer must support. In addition, ConfigRecognizer must support the following two
WCR_ subfunctions:
WCR_INITRECOGNIZER

When an application installs a recognizer by using InstallRecognizer, the system calls the
recognizer's ConfigRecognizer function with the WCR_INITRECOGNIZER subfunction. The
wParam parameter is not used and lParam is a far pointer to an ASCII string containing the user's
name, as set in the system registry. If successful, the recognizer should return 1; otherwise, it
should return 0 to indicate an error.
In response to the WCR_INITRECOGNIZER subfunction, the recognizer should perform any
required initialization tasks. (This subfunction replaces the InitRecognizer function exported by
version 1.0 recognizers.)

WCR_CLOSERECOGNIZER

When an application unloads a recognizer by using UninstallRecognizer, the system calls the
recognizer's ConfigRecognizer function with the WCR_CLOSERECOGNIZER subfunction. The
wParam and lParam parameters are not used. If successful, the recognizer should return 1;
otherwise, it should return 0 to indicate an error.
In response to the WCR_CLOSERECOGNIZER subfunction, the recognizer should perform any
required cleanup tasks. (This subfunction replaces the CloseRecognizer function exported by
version 1.0 recognizers.)

wParam

Depends on the value of uSubFunction.
lParam

A value, or an address of a buffer. The contents of the buffer depend on the value of uSubFunction.

Return Value
Returns 0 or a positive value, depending on uSubFunction.

Comments
ConfigRecognizer provides initialization and query services for the pen system. The parameter
uSubFunction is a WCR_ value that specifies the configuration service that ConfigRecognizer must
perform.

When an application calls ConfigHREC, the system determines the appropriate recognizer and passes
the call to that recognizer's ConfigRecognizer function. ConfigHREC exists only because its extra
argument hrec identifies to the system the intended recognizer library. This information is necessary in
version 2.0 of the Pen API, which allows multiple recognizer libraries to exist simultaneously. Thus, the
names ConfigHREC and ConfigRecognizer refer to the same function. Applications refer to the function
as ConfigHREC, while recognizers export it as ConfigRecognizer.

See Also
ConfigHREC, SYV_

CorrectWriting       

1.0 2.0

Sends text to the CorrectText dialog box to allow the user to edit text using a single-line or multiline bedit
control.

BOOL CorrectWriting(HWND hwnd, LPSTR lpText0, UINT cbText0, LPVOID lpvReserved, DWORD
dwFlags, DWORD dwParam)

Parameters
hwnd

Handle of the owner of the CorrectText dialog box or writing tools used to edit the text.
lpText0

Far pointer to a buffer containing the text to be corrected.
When CorrectWriting returns, the lpText0 buffer holds the corrected text. As a general rule, this
parameter should allow for growth by a factor of at least two or some maximum size that depends on
the field of entry.

cbText0

Number of characters in lpText0. This value must be greater than 1 and include a byte for the string's
null terminator.

lpvReserved

This parameter is reserved and should be set to NULL.
dwFlags

Translation and style flags, formed by the low-order word and high-order word of dwFlags. The low-
order word must be one or more of the following flags, combined with the bitwise-OR operator. Note
that the CWR_REPLACECR and CWR_REPLACETAB flags replace CWR_STRIPTAB and
CWR_STRIPCR, respectively; both flags are in version 1.0 of the Pen API.

Constant Description
CWR_BOXES Create bedit writing tool instead of keyboard.

This flag can be used only for edit control
and its derivatives. Use of this flag by
applications is not recommended.

CWR_HEDIT Indicates that the given hwnd is an edit
control or a control derived from the edit
control. This flag can be used only for edit
control and its derivatives. Use of this flag by
applications is not recommended.

CWR_INSERT Use "Insert Text" instead of "Edit Text" as the
title. CWR_TITLE overrides this flag.

CWR_KEYBOARD Create keyboard writing tool instead of bedit
lens. This flag can be used only for edit
control and its derivatives. Use of this flag by
applications is not recommended.

CWR_KKCONVERTInitiate IME (Japanese version only).
CWR_REPLACECR Replace carriage return characters in the

text in the buffer by spaces just before the

call returns.
CWR_REPLACETA
B

Replace tabs in the text in the buffer by
spaces just before the call returns.

CWR_SIMPLE Use writing tool (simple dialog box). This flag
can be used only for an edit control and its
derivatives. Use of this flag by applications is
not recommended.

CWR_SINGLELINE
EDIT

Replace carriage returns and tabs with
spaces and strip linefeeds from the text in
the buffer just before the call returns.

CWR_STRIPLF Strip linefeed characters from the text in the
buffer just before the call returns.

CWR_TITLE Interpret dwParam (see below) as a pointer
to the title text string.

The high-order word must be one of the following values and cannot be combined with the bitwise-OR
operator. The values determine the type of keyboard to show when the user clicks the keyboard
button in the dialog box.

Constant Description
CWRK_TELPAD Use the telephone-type keyboard.
CWRK_BASIC Use the basic keyboard.
CWRK_DEFAULT Use the default keyboard type.

The default keyboard type is
currently the same as the basic
keyboard type.

CWRK_FULL Use the full keyboard.
CWRK_NUMPAD Use the numeric keyboard.

dwParam

A far pointer to a text string that serves as the title of the dialog box if CWR_TITLE is present in
dwFlags; otherwise, this parameter must be 0.

Return Value
Returns TRUE if the writing tool or CorrectWriting operation was successful. Otherwise, the return value
is FALSE.

Comments
CorrectWriting sends a WM_PENMISC message with PMSC_GETHRC as the lParam to the specified
window. This message requests the HRC handle associated with the window, which the system then uses
for the dialog box. The window should return a copy of its HRC so that the system can destroy it before
the call returns. If the window returns NULL to this message, the system creates a default HRC.

Note that in the Japanese version, CorrectWriting is supported but internally calls CorrectWritingEx,
which opens a Dialog Input Window.

CorrectWritingEx       

2.0

Sends text to the CorrectText dialog box to allow the user to edit text using the Japanese Data Input
Window. (Japanese version only.)

INT CorrectWritingEx(HWND hwnd, LPSTR lpText, UINT cbText, LPCWX lpcwx)

Parameters
hwnd

Handle of the owner of the CorrectText dialog box or writing tool used to edit the text. This can be
NULL.

lpText

Far pointer to a buffer containing text to correct. This is copied into the Data Input Window's edit
control. If lpText is NULL, a WM_GETTEXT message is sent to the text source window, specified by
the hwndText member of lpcwx, or if lpcwx or its hwndText member is NULL, to hwnd. On successful
exit, a WM_SETTEXT message will be sent to that window with modified text.

cbText

Size of the lpText buffer. If the source of the text is an edit control constrained by EM_LIMITTEXT,
cbText should reflect that size. If lpText is NULL, the cbText value will be used to limit text if it is
greater than zero; otherwise, no limit is used and the returned text may be of arbitrary size.

lpcwx

Address of a CWX structure, or NULL. The structure is used to specify optional correction
parameters; for a description of its members, see CWX. If this value is NULL, the following default
assumptions are made:
· The text window is the same as the owner window hwnd.
· A default recognition context is used.
· The edit control style is a combination of ES_LEFT and ES_MULTILINE.
· All text is selected; the caption is "Edit Text".
· Most recently use values for context flags, keyboard, keyboard states, position, and size are used.

Return Value
If there is a programming or memory error, the negative value CWXR_ERROR is returned. Otherwise,
one of the following nonnegative values is returned:

Constant Description
CWXR_MODIFIED User pressed the OK button.
CWXR_UNMODIFIED User pressed the Cancel button, or closed

the dialog, or pressed the OK button but
did not make any changes to the text.

Comments
An application must be sure to initialize the CWX structure properly if it is used. In particular, the cbSize
member must be set to sizeof(CWX), and the remaining fields (at least up to dwSel) are typically set to
zero.

Example
The following example shows how to initialize and call CorrectWritingEx when a button is pressed in a
dialog:

CWX cwx = {sizeof(CWX), 0, NULL, NULL, {0}, 0L, 0L};

cwx.hwndText = GetDlgItem(hdlg, IDD_ETSL); // dialog edit
cwx.dwEditStyle = GetWindowLong(cwx.hwndText, GWL_STYLE)

| ES_PASSWORD;
cwx.dwSel = SendMessage(cwx.hwndText, EM_GETSEL, 0, 0);
_fstrcpy((LPSTR)cwx.szCaption, (LPSTR)"Enter your password:");

// we specify kbd and context, but use MRU placement
cwx.wApplyFlags = CWXA_KBD | CWXA_STATE | CWXA_CONTEXT;

// don't update most-recently used settings for this one-shot:
cwx.wApplyFlags |= CWXA_NOUPDATEMRU;
cwx.ixkb = CWXK_QWERTY;
cwx.rgState[CWXK_QWERTY-CWXK_FIRST] = CWXKS_HAN | CWXKS_ROMA;
cwx.dwFlags = CWX_NOTOOLTIPS | CWX_TOPMOST; // no distractions

if (CorrectWritingEx(hdlg, NULL, 0, &cwx) != CWXR_MODIFIED)

ErrBox(EB_WHOAREYOU);
// validate pwd in the text window etc...

See Also

CWX

CreateCompatibleHRC       

2.0

Creates a handwriting recognition context HRC that can be used to do handwriting recognition, optionally
compatible with an existing context template. A recognizer must export this function.

HRC CreateCompatibleHRC(HRC hrcTemplate, HREC hrec)

Parameters
hrcTemplate

Handle to an existing HRC object that can provide default settings for the recognition context being
created. If NULL, this parameter is ignored and default settings are used.

hrec

Instance handle of the recognizer library. This is the value returned by the Windows function
LoadLibrary. Note that the module handle returned by the Windows function GetModuleHandle
does not work in this case. If this value is NULL, the system default recognizer is used by internally
making a call to GetPenMiscInfo with PMI_SYSREC as the first argument.

Return Value
Returns a handle to a new HRC object if successful; otherwise, returns NULL.

Comments
The hrcTemplate parameter can be used to copy an old context into the new HRC object. This includes
settings such as word lists, coercion, and GUIDE structure, but excludes any pen data that may be in the
old context.

See Also
DestroyHRC, GetResultsHRC, SetMaxResultsHRC

CreateHWL       

2.0

Creates a handle to a word list.

HWL CreateHWL(HREC hrec, LPSTR lpsz, UINT uType, DWORD dwReserved)

Parameters
hrec

Module handle of the recognizer library. If this value is NULL, the system default recognizer is used.
lpsz

A pointer to a source of words, depending on the uType parameter.
Type

Word-list type. This can be one of the following values:
Constant Description
WLT_EMPTY An empty word list is created. The lpsz

parameter is ignored.
WLT_STRING The lpsz parameter points to a single null-

terminated character string in memory.
WLT_STRINGTABLE The lpsz parameter points to an array of

null-terminated character strings in
memory. The list is terminated by two null
characters.

dwReserved

Must be 0.

Return Value
If successful, returns the handle of a newly created word list; otherwise, returns NULL. If the recognizer
does not support word lists, the return value is NULL.

Comments
CreateHWL creates a word list for constraining recognition. Word lists can be combined using the
AddWordsHWL function.

To make a word list from words in a file, an application uses CreateHWL to create an empty word list,
then reads the file into it with the ReadHWL function.

Any word lists created by an application must eventually be destroyed by calling DestroyHWL.
Attempting to unload a recognizer that has open word lists results in an error.

For a description of word lists and how a recognizer uses them, see "Configuring the HRC" in Chapter 5,
"The Recognition Process."

Example
The following example demonstrates how to provide a word list to constrain recognition results to the
words "Canada," "USA," or "Mexico":

static char szNames[] = { "Canada",
 "USA",
 "Mexico"
};

HWL hwlCountries = CreateHWL(NULL,

(LPSTR)szNames,
WLT_STRINGS, 0L); // Create early for later use
.
.
.

if (hrc = CreateCompatibleHRC(NULL, NULL))
{
 SetWordlistHRC(hrc, hwlCountries); // Set list into HRC
 SetWordlistCoercionHRC(hrc, SCH_FORCE); // Force match

 .
 . // Code that collects and recognizes input goes here
 .

}

See Also

AddWordsHWL, DestroyHWL, SetWordlistHRC

CreateInkset       

2.0

Creates an empty inkset.

HINKSET CreateInkset(UINT gmemFlags)

Parameters
gmemFlags

Flag that specifies whether or not the Windows GlobalAlloc function should create a shared memory
object when the inkset object is created. This flag should be either 0 or GMEM_DDESHARE. The
GMEM_MOVEABLE and GMEM_ZEROINIT flags are added to this value, and other GMEM_ flags
are ignored.

Return Value
Returns a handle to an inkset if successful; otherwise, the return value is NULL.

See Also
DestroyInkset, INTERVAL

CreateInksetHRCRESULT       

2.0

Creates an inkset from parts of a recognition result.

HINKSET CreateInksetHRCRESULT(HRCRESULT hrcresult, UINT iSyv, UINT cSyv)

Parameters
hrcresult

Handle of an HRCRESULT object.
iSyv

Index to first symbol for inkset.
cSyv

Count of symbols.

Return Value
Returns the handle of a newly created inkset if successful. If the index to the first symbol iSyv is invalid, or
some other error occurs, the return value is NULL.

Comments
The inkset spans a series of continuous symbols; disjoint sets are not allowed. Before terminating, the
calling application must destroy the HINKSET object by calling DestroyInkset.

If the range of symbols specified by iSyv + cSyv exceeds the number of symbols available, the returned
inkset is valid only for available symbols. This is not an error, so it is possible to assign cSyv a large value
to get an inkset for all symbols after iSyv.

For a description of inksets, see "The HINKSET Object" in Chapter 4, "The Inking Process."

See Also
DestroyInkset, GetResultsHRC

CreatePenData       

1.0 2.0

Creates an empty HPENDATA block.

Note This function is provided only for compatibility with version 1.0 of the Pen API and will not be
supported in future versions. Use CreatePenDataEx instead.

HPENDATA CreatePenData(LPPENINFO lppeninfo, int cbOem, UINT uScale, UINT gmemFlags)

Parameters
lppeninfo

Address of tablet information to be inserted into the PENINFO structure in the pen data header. If this
parameter is NULL, the current tablet settings are retrieved from the hardware instead. If there is no
tablet, the pen data will not have an embedded PENINFO section and the wPndts member in
PENDATAHEADER will have the PDTS_NOPENINFO flag set.

cbOem

Width of OEM data packet. If this value is greater than or equal to 0, the OEM data overrides the
contents of the PENINFO structure, if present; otherwise, a negative value such as -1 can be used to
specify that the system should calculate the size of the OEM data packet.

uScale

Data-scaling metric value. This parameter can be one of the following values:
Constant Description
PDTS_LOMETRIC Each logical unit is mapped to 0.1

millimeter. Positive x is to the
right; positive y is down.

PDTS_HIMETRIC Each logical unit is mapped to
0.01 millimeter. Positive x is to
the right; positive y is down.

PDTS_HIENGLISH Each logical unit is mapped to
0.001 inch. Positive x is to the
right; positive y is down.

PDTS_ARBITRARY The application has done its own
scaling of the data point.

PDTS_STANDARDSCALE The standard scaling metric;
equivalent to PDTS_HIENGLISH.

gmemFlags

Flag that specifies whether or not the Windows GlobalAlloc function should create a shared memory
object when the pen data object is created. This should be either 0 or GMEM_DDESHARE. The
GMEM_MOVEABLE and GMEM_ZEROINIT flags are added to this value, and other GMEM_ flags
are ignored.

Return Value
Returns a handle to a new and empty pen data object if successful; otherwise, it returns NULL.

Comments
The application provides the PENINFO structure for the header, the real size of any OEM data stored with
each coordinate, and the scale of the coordinates.

The uScale parameter specifies scaling values that are also used in the MetricScalePenData function
and in the PENDATAHEADER structure member wPndts. The scaling values do not behave in the same
way as the Windows scaling units with similar names. For example, a 1-inch line in MM_HIENGLISH will
not necessarily be an inch long on the screen because GDI does not know the size of the monitor.
However, with PDTS_HIENGLISH in MetricScalePenData, a line drawn an inch long is actually an inch
long.

If lppeninfo is NULL, and if there is no tablet on the system (that is, if SendDriverMessage fails), it
returns NULL.

The cbOem value must be less than or equal to 12, depending on the size of the OEM data packet. A
value of 0 explicitly sets the amount of OEM information to none. A negative value indicates that the size
of the OEM data packet is to be calculated by the system. Any existing value for the cbOemData member
of PENINFO can be overwritten.

See Also
CreatePenDataEx, DestroyPenData, PDTS_

CreatePenDataEx       

2.0

Creates a PENDATA structure with specified OEM data subsets.

HPENDATA CreatePenDataEx(LPPENINFO lppeninfo, UINT uScale, UINT fuOptions, UINT gmemFlags
)

Parameters
lppeninfo

Address of tablet information to be inserted into the PENINFO structure in the pen data header. If this
parameter is NULL, the current tablet settings are retrieved from the hardware instead. If there is no
tablet, the pendata will not have an embedded PENINFO section and the wPndts member in
PENDATAHEADER will have the PDTS_NOPENINFO flag set.

uScale

Data-scaling metric value. This parameter can be one of the following values:
Constant Description
PDTS_LOMETRIC Each logical unit is mapped to 0.1

millimeter. Positive x is to the
right; positive y is down.

PDTS_HIMETRIC Each logical unit is mapped to
0.01 millimeter. Positive x is to
the right; positive y is down.

PDTS_HIENGLISH Each logical unit is mapped to
0.001 inch. Positive x is to the
right; positive y is down.

PDTS_ARBITRARY The application has done its own
scaling of the data point.

PDTS_STANDARDSCALE The standard scaling metric is
equivalent to PDTS_HIENGLISH.

fuOptions

Storage and trim options. If this parameter is 0, no timing, PDK_, or OEM data is stored. If it is
CPD_DEFAULT, everything but user data is stored.
Otherwise, this parameter can explicitly specify subsets of OEM and other data. To do so, the
parameter should be a combination of one of the CPD_USER values that allocate extra storage and
any collection of PHW_ constants. (These values should be combined using the bitwise-OR operator.)
The following table lists the PHW_ values for the fuOptions parameter:

Constant Description
PHW_PRESSURE Report pressure in OEM data if available.
PHW_HEIGHT Report height in OEM data if available.
PHW_ANGLEXY Report XY-angle in OEM data if available.
PHW_ANGLEZ Report Z-angle in OEM data if available.
PHW_BARRELROTAT
ION

Report barrel rotation in OEM data if
available.

PHW_OEMSPECIFIC Report OEM-specific value in OEM data if

available.
PHW_PDK Report per-point PDK_ bits in OEM data.
PHW_ALL Report all available OEM data. This flag is

the sum of all other PHW_ flags.
The following table lists the CPD_ values
for the fuOptions parameter:

CPD_DEFAULT Store timing, PDK, and all OEM data for
each stroke.

CPD_USERBYTE Set internal flag to add space for one byte
of additional storage to be allocated for
each stroke. Added space is for application
use.

CPD_USERWORD Set internal flag to add space for one word
of additional storage to be allocated for
each stroke. Added space is for application
use.

CPD_USERDWORD Set internal flag to add space for one
doubleword of additional storage to be
allocated for each stroke. Added space is
for application use.

CPD_TIME Maintain absolute time information for
each stroke.

gmemFlags

Flag that specifies whether GlobalAlloc should create a shared memory object or not when the pen
data object is created. This should be either 0 or GMEM_DDESHARE. The GMEM_MOVEABLE and
GMEM_ZEROINIT flags are added to this value, and other GMEM_ flags are ignored.

Return Value
Returns the handle to the HPENDATA object if successful; otherwise, returns NULL.

Comments
CreatePenDataEx is an extension of CreatePenData that allows a more detailed specification of what is
stored in each stroke of the pen data.

The fuOptions parameter is typically specified as CPD_DEFAULT to request collection and storage of all
information generated by the tablet, including x-y data, absolute stroke timing information, and all
available OEM data. The OEM data set that is actually stored in the pen data is the minimum set that
satisfies both the request and what is physically available from the tablet (that is, intersection set).

If lppeninfo is NULL, and if there is no tablet on the system (that is, if the SendDriverMessage function
fails), the pen data that is created will not have any hardware or OEM information and a default sampling
rate of 100Hz will be used. This case is similar to removing PENINFO from the header using
TrimPenData with a parameter of TPD_PENINFO.

A value of 0 for fuOptions is used to indicate that only coordinate data is required. While recognition of
this type of pen data may suffer, this provides the least complicated type of pen data.

PHW_ bits can be specified to indicate which OEM values or per-point PDK_ pen state information is to
be collected. Note that, except for PHW_PDK, which is always valid, this is only a request; if the hardware
does not support certain types of OEM data, that data will be absent.

The uScale parameter specifies scaling values that are also used in the MetricScalePenData function

and in the PENDATAHEADER structure member wPndts. The scaling values do not behave in the same
way as the Windows scaling units with similar names. For example, a 1-inch line in MM_HIENGLISH will
not necessarily be an inch long on the screen, because GDI does not know the size of the monitor.
However, with PDTS_HIENGLISH in MetricScalePenData, a line drawn an inch long is actually an inch
long.

See Also
CreatePenData, DestroyPenData, PDTS_, PDK_

CreatePenDataHRC       

2.0

Returns the handle to the HPENDATA object containing the pen data in the HRC.

HPENDATA CreatePenDataHRC(HRC hrc)

Parameters
hrc

Handle to the HRC object.

Return Value
Returns a handle to the HPENDATA object if successful; otherwise, it returns NULL.

Comments
It is the responsibility of the caller to destroy the HPENDATA object.

A recognizer is not required to use or maintain OEM data; that is, a recognizer can choose to ignore some
or all of the OEM data it receives from AddPenDataHRC or AddPenInputHRC. This means that the
HPENDATA object the recognizer returns through CreatePenDataHRC may not contain all the OEM data
originally provided by the application. Whether or not a recognizer uses the OEM data, it should store all
such data it receives and forward it so that subsequent recognizers, if any, can use the data.

See Also
AddPenInputHRC, AddPenDataHRC

CreatePenDataRegion       

2.0

Creates a region that envelops the point data in an HPENDATA object.

HRGN CreatePenDataRegion(HPENDATA hpndt, UINT uType)

Parameters
hpndt

Handle to the HPENDATA object.
uType

Type of region to create. This can be one of the following values:
CPDR_BOX

The bounding box of the pen data ink is converted to a region.
CPDR_LASSO

The pen data describes a lasso that makes up the boundary of the region. If the last point of the
pen data does not coincide with the first point, a closed figure is created either by joining the
endpoints with a straight line or by using the intersection point of the beginning and ending line
segments, whichever is more appropriate. Only the first stroke is used; if the pen data has more
than a single stroke, subsequent strokes are ignored.

Return Value
This function returns a handle to a region if successful; otherwise the return value is NULL.

Comments
The coordinates of the region are the same as those used in the pen data. It is the application's
responsibility to remove the region when the application is finished with it, using the Windows
DeleteObject function.

CreatePenDataRegion enables an application to determine the screen area a gesture such as lasso or
cut applies to. For an example of how to use the CreatePenDataRegion function to determine the area of
a gesture, see the section "DoDefaultPenInput Messages" in Chapter 2, "Starting Out with System
Defaults."

DestroyHRC       

2.0

Destroys an HRC object. A recognizer must export this function.

int DestroyHRC(HRC hrc)

Parameters
hrc

Handle to the HRC object.

Return Value
Returns HRCR_OK if successful; otherwise, returns one of the following negative values:

Constant Description
HRCR_ERROR Invalid parameter or other error.
HRCR_MEMERR Insufficient memory.

Comments
If the HRC contains other objects such as an HPENDATA object, the recognizer must destroy the
contained objects as well. After DestroyHRC returns HRCR_OK, the handle hrc is no longer valid. The
application should set hrc to NULL to ensure it is not inadvertently used again.

See Also
CreateCompatibleHRC, DestroyHRCRESULT

DestroyHRCRESULT       

2.0

Destroys an HRCRESULT object. A recognizer must export this function.

int DestroyHRCRESULT(HRCRESULT hrcresult)

Parameters
hrcresult

Handle to the HRCRESULT object to destroy.

Return Value
Returns HRCR_OK if successful; otherwise, returns one of the following negative values:

Constant Description
HRCR_ERROR Invalid parameter or other error.
HRCR_MEMERR Insufficient memory.

Comments
A recognizer must maintain a count of the number of HRCRESULT objects it creates. If an application
calls DestroyHRC, the recognizer should not remove the HRC from memory until the application has
called DestroyHRCRESULT for all HRCRESULT objects associated with the HRC.

After DestroyHRCRESULT returns HRCR_OK, the handle hrcresult is no longer valid. The application
should set hrcresult to NULL to ensure it is not inadvertently used again.

See Also
GetResultsHRC, DestroyHRC

DestroyHWL       

2.0

Destroys a handle to a handwriting-recognition word list.

int DestroyHWL(HWL hwl)

Parameters
hwl

Word list to destroy.

Return Value
Returns HRCR_OK if successful; otherwise, returns one of the following negative values:

Constant Description
HRCR_ERROR Invalid parameter or other error.
HRCR_MEMERR Insufficient memory.
HRCR_UNSUPPORTE
D

The recognizer does not support this
function.

Comments
After DestroyHWL returns HRCR_OK, the handle hwl is no longer valid. The application should set hwl to
NULL to ensure it is not inadvertently used again.

See Also
CreateHWL

DestroyInkset       

2.0

Frees memory associated with an inkset.

BOOL DestroyInkset(HINKSET hinkset)

Parameters
hinkset

Handle of an inkset to destroy.

Return Value
Returns TRUE if successful; otherwise FALSE.

Comments
Once memory is freed, the handle hinkset is invalid. The application should set the handle to NULL.

See Also
CreateInkset, INTERVAL

DestroyPenData       

1.0 2.0

Frees the memory associated with a specified pen data memory block.

BOOL DestroyPenData(HPENDATA hpndt)

Parameters
hpndt

Handle to a pen data memory block to destroy.

Return Value
Returns TRUE if the memory was successfully freed; otherwise, FALSE.

Comments
Once the memory block is destroyed, the HPENDATA handle is no longer valid. The application should
set the handle to NULL.

See Also
CreatePenData, CreatePenDataEx

DictionarySearch       

1.0 2.0

Performs a dictionary search for a version 1.0 recognizer.

Note This function is provided only for compatibility with version 1.0 of the Pen API and will not be
supported in future versions.

BOOL DictionarySearch(LPRC lprc, LPSYE lpsye, int cSye, LPSYV lpsyv, int csyvMax)

Parameters
lprc

Address of an RC structure.
lpsye

Address of an array of SYE symbol elements that constitute the symbol graph.
cSye

Number of SYE structures in the array.
lpsyv

Output buffer of SYV types. This parameter contains the return results of the dictionary search. A
SYV_NULL value is always appended at the end of this buffer. Therefore, this parameter must have
enough space for csyvMax + 1 SYV symbol values.

csyvMax

Size of the output buffer.

Return Value
Returns TRUE if any enumeration is found in a dictionary. It returns FALSE if a NULL dictionary was
requested or none of the enumerations was found in any dictionary.

Comments
The DictionarySearch function uses the symbol graph pointed to by lpsye, performs a dictionary search
based on the options set in lprc, and returns the result as an array of SYV symbol values in the buffer
pointed to by lpsyv. The function returns the number of SYV elements copied, limited by the maximum
specified in the csyvMax parameter.

DictionarySearch first passes the symbol graph with DIRQ_SYMBOLGRAPH to all the dictionaries in the
rglpdf array in the specified RC structure. If none succeeds, the function enumerates the symbol graph in
lpsye and searches through all of the dictionary functions for a match. The calling application can get
suggestions by setting the RCO_SUGGEST flag in the lRcOptions field in the RC structure. When this
flag is set and no enumeration is found in any of the dictionaries in the rglpdf array, DictionarySearch
tries to get a suggestion from the dictionaries on the path. DictionarySearch takes the first suggestion
offered by any dictionary and returns that as the result of the search. If there are no suggestions, the
function returns the best enumeration. The best enumeration is obtained using the
FirstSymbolFromGraph function.

If the option RCO_NOSPACEBREAK is set in the lRcOptions field of the specified RC structure,
DictionarySearch treats the entire lpsye array as a single symbol graph. If this flag is not set, the function

breaks down the input symbol graph into tokens delimited by white space, performs the search sequence
on each of them, and assembles the result in the lpsyv array.

This function uses the EnumSymbols function for enumeration and the wTryDictionary member in the
RC structure to specify the maximum number of enumerations to search through for each symbol graph
token.

See Also
EnumSymbols, FirstSymbolFromGraph, SYE, SYV_, RC

DoDefaultPenInput       

2.0

Initiates default handling of pen input.

int DoDefaultPenInput(HWND hwnd, UINT wEventRef)

Parameters
hwnd

Handle to the window initiating the default processing.
wEventRef

An identifier of a pen event in the input stream, from which input is begun. This identifier is the value
returned from the GetMessageExtraInfo function.

Return Value
Returns one of the following values:

Constant Description
PCMR_OK Pen collection was successfully

started.
PCMR_ALREADYCOLLECTING StartPenInput has already been

called for this session.
PCMR_APPTERMINATED The application aborted input.
PCMR_ERROR Illegal parameter or unspecified

error.
PCMR_INVALID_PACKETID Invalid packet identifier.
PCMR_SELECT Press-and-hold was detected.

Collection is not started.
PCMR_TAP A pen tap was detected. Collection

is not started.

Comments
DoDefaultPenInput simplifies the pen input process by including the following capabilities in a single call:

· Starts pen input by calling StartPenInput
· Starts inking by calling StartInking
· Saves the screen background overwritten by the ink
· Collects the pen input data
· Stops inking by calling StopInking
· Stops pen input by calling StopPenInput
· Targets the pen input data to windows
· Recognizes results
· Sends the recognition results to the targets

The default processing proceeds in three phases: initialization, data gathering, and termination. A set of
submessages corresponds to each of the three phases.

· During the initialization phase, the system sends the WM_PENEVENT sub-message
PE_SETTARGETS and potentially several PE_GETPCMINFO and PE_GETINKINGINFO messages.
After the target or the DefWindowProc function handles these messages and returns a value of
PCMR_OK to indicate success, the data-gathering phase begins.

· During the data-gathering phase, the window specified by the hwnd parameter starts to receive the
core pen-input submessages PE_PENDOWN, PE_PENUP, and PE_PENMOVE. The window should
let these submessages fall through to DefWindowProc, which translates them into the higher-level
messages PE_BEGINDATA and PE_MOREDATA. These are sent to one of the windows specified in
the htrgTarget members of the TARGET structures if targeting is in progress; otherwise, the
messages are sent to hwnd.

· The termination phase begins when the pen input terminates. The target window should let the core
termination messages PE_TERMINATING and PE_TERMINATED fall through to DefWindowProc.
The PE_ENDDATA, PE_RESULT, and PE_ENDINPUT submessages are sent by DefWindowProc
while processing PE_TERMINATED.

A return value of LRET_ABORT to any of the WM_PENEVENT submessages aborts the entire process of
default input.

See Also
WM_PENEVENT, StartPenInput, StartInking, StopPenInput, StopInking

DPtoTP       

1.0 2.0

Converts an array of points in display coordinates to tablet coordinates.

BOOL DPtoTP(LPPOINT lppt, int cPnt)

Parameters
lppt

Address of an array of POINT structures to convert to tablet coordinates. This parameter cannot be
NULL.

cPnt

Number of POINT structures to convert.

Return Value
Returns TRUE if the conversion was successful; otherwise, returns FALSE.

Comments
Because of possible rounding errors, the DPtoTP and TPtoDP functions are not guaranteed to be perfect
inverses of each other.

The calling application must avoid overflow by passing in points that are within the limits of the current
physical display.

See Also
TPtoDP

DrawPenData       

1.0 2.0

Displays the pen data in an HPENDATA object as a trail of visible ink.

void DrawPenData(HDC hdc, LPRECT lprect, HPENDATA hpndt)

Parameters
hdc

Handle to a device context. This parameter can also be the handle of a metafile.
lprect

Bounding rectangle of ink, in client coordinates. Can be NULL.
hpndt

Handle to a pen data object.

Return Value
This function does not return a value. If hpndt is NULL, DrawPenData does nothing.

Comments
DrawPenData draws the pen data in the specified device context using the GDI Polyline function. The
current settings in the device context rather than the ink characteristics determine how the data is
rendered. This means the ink width and color specified in the PENDATAHEADER structure have no effect
on how DrawPenData renders the ink. To alter the display characteristics of the ink, an application must
call the appropriate Windows GDI functions to set the GDI drawing pen (not to be confused with the real
pen).

The application using DrawPenData must either scale the data points or set the mapping appropriately if
lprect is NULL.

If lprect is not NULL, the points are scaled into lprect as the drawing is done. Internally, nondestructive
calls to the SetViewportExtEx, SetViewPortOrg, SetWindowOrg, and SetWindowExtEx functions are
used to render the pen data in the device context within the bounds of the provided rectangle. An
application must compute the proper pen width (if it is other than 1) before calling this function with a valid
lprect parameter to account for the scaling that occurs.

DrawPenData draws the ink in the rectangle relative to the upper-left corner of the window. It ignores any
changes that have been made to the origin of the device context by previous calls to the SetWindowOrg
or SetViewportOrgEx functions. If the origin has changed, the rectangle passed to DrawPenData must
be offset by the appropriate amount.

If the ink is to be drawn with a width of greater than 1 pixel, the width of the currently selected pen must
be set to achieve the desired result. The width must be set in client coordinates if a mapping mode is set
in the device context. For example, if the mapping mode has been set to MM_HIENGLISH, the pen width
must be set to a number appropriate for the desired width in MM_HIENGLISH units to preserve the
proper scale of the ink. This scaling is only an issue when the ink width is greater than 1.

The rendering of the ink data produced by DrawPenData generally does not exactly match the rendering
produced by the display driver when the data was first collected. This discrepancy results because
DrawPenData and the Polyline function use different algorithms to draw the data. The difference is an
occasional "off by one" error that appears as a shifting of some pixels around the edges, depending on

the rounding done by Polyline. An application that requires an exact replication of the original ink
rendering should call the RedisplayPenData function.

The DrawPenDataEx function allows more control when drawing the contents of pen structures.

See Also
CreatePenData, DrawPenDataEx, DuplicatePenData, RedisplayPenData

DrawPenDataEx       

2.0

An enhanced version of DrawPenData. Besides displaying the pen data in an HPENDATA object as a
trail of visible ink, DrawPenDataEx can govern the speed at which the data is rendered, a process called
animation.

int DrawPenDataEx(HDC hdc, LPRECT lprectVP, HPENDATA hpndt, UINT iStrkFirst, UINT iStrkLast,
UINT iPntFirst, UINT iPntLast, ANIMATEPROC lpfnAnimateCB, LPANIMATEINFO lpai, UINT fuFlags)

Parameters
hdc

Handle to a device context.
lprectVP

Viewport rectangle, usually the bounding rectangle of the pen data, in client coordinates. The ink is
scaled to fit the specified rectangle. If this parameter is NULL, the bounding rectangle of the ink in
hpndt is used, in whatever coordinate system it happens to be in.

hpndt

Handle to a pen data object.
iStrkFirst

Index of the first stroke to display.
iStrkLast

Index of the last stroke to display.
iPntFirst

Index of the first point in the first stroke to display.
iPntLast

Index of the last point in the last stroke to display.
lpfnAnimateCB

Pointer to a callback function instance, or NULL. The callback function is called periodically during
drawing, and animation is controlled by values in the structure addressed by the next parameter, lpai,
which should not be NULL. If lpfnAnimateCB and the speed in the lpai structure parameters are
NULL, the specified pen data is drawn without regard to timing information, and no callback functions
are generated. See AnimateProc for a description of the callback function.

lpai

Address of an ANIMATEINFO structure that specifies animation parameters to control how the pen
data is drawn. If this parameter is NULL, the function draws the specified pen data without regard to
timing information, and no callback functions are generated; otherwise, the caller must initialize the
cbSize member to sizeof(ANIMATEINFO).

fuFlags

This flag can be 0 or one of the following values:
DPD_HDCPEN

Use the GDI pen already selected into the specified device context. If this flag is set, any pen
formatting stored in hpndt is ignored and all strokes are drawn with a single width and color. The
DrawPenData function uses this flag.

DPD_DRAWSEL

Paint selected strokes in the specified range. A solid pen is used, with a width slightly larger than
the stroke width. This flag can be used only for drawing and is ignored for animation. It is
incompatible with DPD_HDCPEN.

Return Value
Returns PDR_OK if successful. Attempting to draw an empty HPENDATA (containing no strokes) also
returns PDR_OK. Otherwise, returns one of the following:

Constant Description
PDR_ABORT Drawing aborted because pen data became

invalid after a callback or yield.
PDR_CANCEL Callback cancel or impasse. An impasse

occurs when the user attempts to animate
with 0 percent speed (that is, pause), but
the callback interval is on a per-stroke basis.

PDR_COMPRESSED Pen data is compressed.
PDR_ERROR Bad animation structure, invalid sampling

rate (0 or less) in pen data header, illegal
flags, or other error.

PDR_MEMERR Memory error.
PDR_PNDTERR Invalid pen data. This value is also returned

if the pen data is destroyed or corrupted
during drawing or animation. This error can
occur if an application is drawing a large pen
data object and then destroys the data
before drawing is complete.

PDR_PNTINDEXERR Invalid point index.
PDR_STRKINDEXERR Invalid stroke index.
PDR_VERSIONERR Could not convert old pendata.

Comments
DrawPenDataEx is a general-purpose drawing function for rendering pen data objects. The calling
application can use the timing information in the strokes to animate the pen data and specify which subset
of the pen data should be drawn.

Partial pen data objects can be drawn by specifying first and last strokes and points with iStrkFirst,
iStrkLast, iPntFirst, and iPntLast. Set beginning values to 0 and ending values to IX_END to display the
entire pen data object. The function fails if any of these values lie outside the ranges available in the pen
data. The stroke values must be between 0 and the total number of strokes in the pen data, and the point
indices must be between 0 and the number of points in their stroke.

DrawPenDataEx can display only a set of sequential strokes with a single call. To draw nonsequential
strokes¾say, the second, fifth, and eighth strokes of the pen data¾requires multiple calls to
DrawPenDataEx.

Ink displayed by DrawPenDataEx differs slightly from the original rendering, as described in the
DrawPenData topic. However, DrawPenDataEx can automatically display the ink with its original color
and width, saving the application the burden of resetting the current GDI pen characteristics. To draw the

ink according to the GDI settings, set fuFlags to DPD_HDCPEN.

If lpfnAnimateCB is not NULL, the specified callback function must return TRUE to continue drawing, or
FALSE to terminate drawing.

An application can modify the pen data while it is being rendered, for example, during an animation
callback, task switching, or internal yield. However, doing so can make internal pointers or data invalid
and result in unpredictable behavior. For this reason, editing the pen data during rendering is not
recommended.

See Also
AnimateProc, DrawPenData, RedisplayPenData, DrawPenDataFmt, ANIMATEINFO

DrawPenDataFmt       

2.0

The DrawPenDataFmt macro is used to draw pen data using its stored stroke attributes.

int DrawPenDataFmt(HDC hdc, LPRECT lprectVP, HPENDATA hpndt)

Parameters
hdc

Handle to a device context.
lprectVP

Viewport rectangle, usually the bounding rectangle of the HPENDATA object, in client coordinates.
The ink is scaled to fit the specified rectangle. If this parameter is NULL, the bounding rectangle of the
ink in hpndt is used, in whatever coordinate system it happens to be in.

hpndt

Handle to an HPENDATA object.

Return Value
Returns PDR_OK if successful. Attempting to draw valid but empty pen data (containing no strokes) also
returns PDR_OK. Otherwise, the return value is one of the following:

Constant Description
PDR_COMPRESSED Pen data is compressed.
PDR_ERROR Invalid sampling rate (0 or less) in pen data

header, or other error.
PDR_MEMERR Memory error.
PDR_PNDTERR Invalid pen data.
PDR_VERSIONERR Could not convert old pen data.

Comments
The DrawPenDataFmt macro is a wrapper for DrawPenDataEx, providing default values for most of the
parameters.

The definition is:

#define DrawPenDataFmt(hdc, lprectVP, hpndt)
DrawPenDataEx(hdc, lprectVP, hpndt, 0, IX_END, 0, IX_END, NULL,

 NULL, 0);

These default values specify:

· Full-speed rendering (no animation).
· Entire data set is drawn (no stroke subsets).

See Also
DrawPenDataEx

DuplicatePenData       

1.0 2.0

Duplicates an HPENDATA object, allowing an application to generate clones of existing pen data.

HPENDATA DuplicatePenData(HPENDATA hpendata, UINT gmemFlags)

Parameters
hpendata

Pen data to be duplicated.
gmemFlags

Flag that specifies whether or not the Windows GlobalAlloc function should create a shared memory
object when the pen data object is created. This should be either 0 or GMEM_DDESHARE. The
GMEM_MOVEABLE and GMEM_ZEROINIT flags are added to this value and other GMEM_ flags
are ignored.

Return Value
Returns a handle to the duplicated pen data object if successful; otherwise, it returns NULL. It returns
NULL if memory is not allocated successfully.

Comments
The DuplicatePenData function duplicates the data specified by the hpendata parameter by creating a
second pen data memory block. The application is responsible for destroying this memory block by calling
DestroyPenData.

See Also
CreatePenData, DestroyPenData

EmulatePen       

1.0 2.0

Emulates a pen in an application that does not use the standard Windows I-beam cursor in text areas.

Note This function is provided only for compatibility with version 1.0 of the Pen API and will not be
supported in future versions. Use DoDefaultPenInput or hedit controls instead.

void EmulatePen(BOOL fPen)

Parameters
fPen

Flag to set pen emulation. TRUE activates pen emulation; FALSE turns it off.

Return Value
This function does not return a value.

Comments
The application must call EmulatePen with fPen set to TRUE whenever the cursor is over a text input
window. When the cursor leaves that area, the application must call EmulatePen with fPen set to FALSE.

EmulatePen is useful only for those applications that do not use other Pen API services and do not use
the standard Windows I-beam cursor. Windows automatically provides pen-based input in edit controls
that use the I-beam cursor, as described in Chapter 1.

See Also
DoDefaultPenInput

EnableGestureSetHRC       

2.0

Enables or disables recognition of specific gestures or collections of gestures in an HRC object.

int EnableGestureSetHRC(HRC hrc, SYV syv, BOOL fEnable)

Parameters
hrc

Handle to the HRC object.
syv

Either a gesture SYV_ symbol value, such as SYV_COPY, or one or more of the following GST_
constants combined using the bitwise-OR operator. Note that individual SYV_ gesture symbol values
cannot be combined with GST_ constants.

Constant Description
GST_SEL Selection and lasso.
GST_CLIP Cut, copy, paste.
GST_WHITE Space, tab, return.
GST_EDIT Insert, correct, undo.
GST_CIRCLELO Lowercase circle gestures.
GST_CIRCLEUP Uppercase circle gestures.
GST_CIRCLE All circle gestures.
GST_ALL All gestures.

fEnable

Enable recognition flag. This flag must be set to TRUE to enable recognition of the gesture or
gestures in syv, or to FALSE to disable recognition of the specified gestures.

Return Value
Returns HRCR_OK if successful; otherwise, returns one of the following negative values:

Constant Description
HRCR_ERROR Invalid parameter or other error.
HRCR_MEMERR Insufficient memory.
HRCR_UNSUPPORTE
D

The recognizer does not support this
function.

Comments
The results of EnableGestureSetHRC are cumulative. The function can be called several times in
succession to refine the precise gesture set required. However, calling EnableGestureSetHRC with syv
set to GST_ALL and fEnable set to FALSE disables all gestures.

By default, a recognition context HRC enables all gestures that its associated recognizer supports.

Example

The following example enables selection, Clipboard functions, and SYV_CIRCLEUPA:

EnableGestureSetHRC(hrc, GST_ALL, FALSE); // Disable all
EnableGestureSetHRC(hrc, GST_SEL | GST_CLIP, TRUE); // Enable sets
EnableGestureSetHRC(hrc, SYV_CIRCLEUPA, TRUE); // Enable circle A

See Also

SetAlphabetHRC, SYV_

EnableSystemDictionaryHRC       

2.0

Enables or disables a recognizer's dictionary.

int EnableSystemDictionaryHRC(HRC hrc, BOOL fEnable)

Parameters
hrc

Handle to the HRC object for the recognizer.
fEnable

Enable recognition flag. This flag must be set to TRUE to enable use of the dictionary, or FALSE to
disable its use.

Return Value
Returns HRCR_OK if successful; otherwise, returns one of the following negative values:

Constant Description
HRCR_ERROR Invalid parameter, no system dictionary, or

other error.
HRCR_MEMERR Insufficient memory.
HRCR_UNSUPPORTE
D

The recognizer does not support this
function.

Comments
The enable state of the system dictionary does not affect any word lists that may be set into the HRC
object.

See Also
SetWordlistHRC

EndEnumStrokes       

1.0 2.0

Unlocks an HPENDATA memory block previously locked with the function BeginEnumStrokes.

Note This function is provided only for compatibility with version 1.0 of the Pen API, and will not be
supported in future versions.

LPPENDATA EndEnumStrokes(HPENDATA hpndt)

Parameters
hpndt

Handle to the locked HPENDATA memory block.

Return Value
Returns NULL if the function is successful; otherwise, the return value is nonzero.

Comments
EndEnumStrokes internally calls the Windows GlobalUnlock function to unlock the memory block
specified by hpndt. Calling EndEnumStrokes invalidates any pointers previously returned by the
GetPenDataStroke function.

See Also
BeginEnumStrokes, GetPenDataStroke

EndPenInputHRC       

2.0

Informs a recognizer that pen data input has been terminated. A recognizer must export this function.

int EndPenInputHRC(HRC hrc)

Parameters
hrc

Handle to the HRC object for the recognizer.

Return Value
Returns HRCR_OK if successful; otherwise, returns one of the following negative values:

Constant Description
HRCR_MEMERR Insufficient memory.
HRCR_ERROR Invalid parameter or other error.

Comments
EndPenInputHRC does not instruct the recognizer to complete recognition; an application must call
ProcessHRC to do that. However, an application that does not use DoDefaultPenInput must call
EndPenInputHRC when it detects that input has finished. (DoDefaultPenInput calls EndPenInputHRC
internally.)

The recognizer can terminate open-ended states and reduce ambiguity in searches when it knows that no
more ink will arrive. For example, the recognizer can keep various options open for possible delayed
strokes that can modify a character. EndPenInputHRC tells the recognizer that no more delayed strokes
will arrive.

After calling EndPenInputHRC for an HRC, an application should cease adding pen input into the HRC.
Some recognizers, such as the Microsoft Handwriting Recognizer (GRECO.DLL), do not accept late pen
input. If the application calls AddPenInputHRC after having called EndPenInputHRC for the same HRC,
the Microsoft Handwriting Recognizer returns HRCR_ERROR.

Other recognizers may differ. With such recognizers, a client may continue to add pen input without error
into a recognition context, even after having called EndPenInputHRC. However, doing so is not efficient.
In the worst case, the recognizer may be forced to reprocess all of the pen data from the beginning.

For an example of a normal termination sequence, see the code sample in GetSymbolsHRCRESULT.

See Also
ProcessHRC, DoDefaultPenInput

EnumSymbols       

1.0 2.0

Enumerates strings in a symbol graph in order of most probable to least probable.

UINT EnumSymbols(LPSYG lpsyg, UINT cstrMax, ENUMPROC lpEnumFunc, LPVOID lvData)

Parameters
lpsyg

Address of the symbol graph SYG.
cstrMax

Maximum number of strings to enumerate.
lpEnumFunc

Address of enumeration function.
lvData

Application-specific data.

Return Value
Returns the number of strings enumerated.

Comments
The EnumSymbols function enumerates all symbol strings (to a maximum defined by cstrMax) contained
in the symbol graph that lpsyg points to. The lpEnumFunc parameter points to the enumeration function
called with each enumeration.

To generate all the symbols from a symbol graph, set cstrMax equal to the value retrieved by passing
lpsyg to GetSymbolCount.

See Also
EnumSymbolsCallback, FirstSymbolFromGraph, SYG, SYV_

EnumSymbolsCallback
1.0 2.0

EnumSymbolsCallback is a callback function pointed to by the lpEnumFunc parameter of
EnumSymbols. The callback function can have any name. The function's name must appear in the
EXPORT section of the application's module definition file.

int CALLBACK EnumSymbolsCallback(LPSYV lpsyv, int csyv, FAR void * lvData)

Parameters
lpsyv

Symbol string.
csyv

Count of symbols in string.
lvData

Address of application-specific data from EnumSymbols.

Return Value
Returns TRUE to continue enumeration, or FALSE to stop enumeration.

See Also
EnumSymbols, SYV_

ExtractPenDataPoints       

2.0

Extracts points from a specified stroke in an HPENDATA object.

int ExtractPenDataPoints(HPENDATA hpndt, UINT iStrk, UINT iPnt, UINT cPnts, LPPOINT lppt,
LPVOID lpvOem, UINT fuOption)

Parameters
hpndt

Handle to an HPENDATA object.
iStrk

Zero-based index of the stroke to remove points from.
iPnt

Zero-based index to the first point to remove.
cPnts

Count of points to remove. If this value is greater than the number of points after iPnt, all the points
from iPnt to the last point of the stroke are removed. ExtractPenDataPoints fails if iPnt is greater
then the number of points in the stroke.

lppt

Array of POINT structures that receives the extracted points. This must be large enough to hold cPnts
points.

lpvOem

Buffer to put extracted OEM data if it exists, or NULL. This must be large enough to hold cPnts OEM
packets.

fuOption

Flags. This value can be EPDP_REMOVE to remove the points from the stroke in the pen data
object.

Return Value
Returns PDR_OK if successful; otherwise, the return value can be one of the following negative values:

Constant Description
PDR_COMPRESSED Pen data is compressed.
PDR_ERROR Parameter or other unspecified error.
PDR_MEMERR Out of memory.
PDR_STRKINDEXERR Invalid stroke index.
PDR_PNTINDEXERR Invalid point index.
PDR_VERSIONERR Could not convert old pen data object.

Comments
ExtractPenDataPoints extracts points (and OEM data, if any) from a specified stroke of the pen data
object specified by hpndt. It copies the extracted points and the OEM data to the buffers pointed to by lppt

and lpvOem.

Use ExtractPenDataStrokes to extract strokes from the pen data object or RemovePenDataStrokes to
remove strokes from the pen data object.

See Also
InsertPenDataPoints, InsertPenDataStroke, RemovePenDataStrokes

ExtractPenDataStrokes       

2.0

Creates a new HPENDATA object that is a subset of an existing object.

int ExtractPenDataStrokes(HPENDATA hpndt, UINT fuExtract, LPARAM lParam, LPHPENDATA
lphpndtNew, UINT gmemFlags)

Parameters
hpndt

Handle to an existing pen data object.
fuExtract

Extraction options and modifiers. This value can be a combination of one of the principal EPDS_
options, with an optional comparison modifier, if appropriate, and the optional EPDS_REMOVE
modifier. The flags should be combined using the bitwise-OR operator.
The following table gives the principal options. These options specify what the new pen data object
will be based on.

Constant Description
EPDS_INKSET Based on a handle to an inkset.

The EPDS_GT, EPDS_GTE,
EPDS_LT, and EPDS_LTE
comparison operators are
ignored, because extraction is
based on matching the inkset.
(However, EPDS_NOT creates a
pen data set with all stroke/inkset
intersections that do not match
the provided inkset.)

EPDS_PENTIP Based on complete pen-tip
characteristics.

EPDS_SELECT Based on selected strokes.
EPDS_STROKEINDEX Based on index.
EPDS_TIPCOLOR Based on pen-tip color.
EPDS_TIPWIDTH Based on pen-tip width.
EPDS_TIPNIB Based on pen tip nib style.
EPDS_USER Based on user-specific value.

The following table gives the
optional comparison modifiers
and the optional removal
modifier:

EPDS_LT Less than comparison: extract all
strokes with attribute less than
the value specified in lParam.

EPDS_LTE Less than or equal comparison:
extract all strokes with attributes
less than or equal to the value
specified in lParam.

EPDS_GT Greater than comparison: extract

all strokes with attributes greater
than the value specified in
lParam.

EPDS_GTE Greater than or equal
comparison: extract all strokes
with attributes greater than or
equal to the value specified in
lParam.

Constant Description
EPDS_NOT Negative comparison (alias

EPDS_NE): extract all strokes
with attributes not equal to the
value specified by lParam. If
combined with other EPDS_
constants, reverses the constant
meaning (for example, EPDS_NE
| EPDS_LT | EPDS_GT means
not less than or not greater than).
If lParam is EPDS_SELECT,
EPDS_NOT means extract all
unselected strokes.

EPDS_REMOVE Remove matching strokes from
source. If this flag is added, any
strokes matching the criteria for
extraction are removed from the
source pen data.

lParam

Meaning is dependent on the value of the fuExtract parameter, as follows:
Constant Description
EPDS_INKSET lParam is a handle to an inkset.
EPDS_PENTIP lParam is a pointer to a PENTIP structure

to compare. Only equal or not-equal
matches are supported. EPDS_LT, for
example, is ignored.

EPDS_SELECT lParam is not used and should be set to 0.
EPDS_STROKEINDEX lParam is a zero-based stroke index to

compare.
EPDS_TIPCOLOR lParam is a pen tip color to compare.
EPDS_TIPNIB lParam is a pen tip nib style to compare.

Only equal or not-equal matches are
supported.

EPDS_TIPWIDTH lParam is a pen tip width to compare.
EPDS_USER lParam is a user-specific value to

compare, cast to a double-word value.

lphpndtNew

Address of a pen data handle if one is to be created; otherwise, NULL.
gmemFlags

Flag that specifies whether or not the Windows GlobalAlloc function should create a shared memory
object when the pen data object is created. This should be either 0 or GMEM_DDESHARE. The
GMEM_MOVEABLE and GMEM_ZEROINIT flags are added to this value, and other GMEM_ flags
are ignored.

Return Value
Returns the number of strokes that match the comparison criteria if successful, or a negative error value.
(The return value can be 0. The maximum is the largest integer value.) The error value can be one of
the following:

Constant Description
PDR_COMPRESSED Pen data is compressed.
PDR_ERROR Parameter or other unspecified error.
PDR_INKSETERR Invalid inkset and EPDS_INKSET specified.
PDR_MEMERR Memory error.
PDR_NA Option not available.
PDR_PNDTERR Invalid pendata.
PDR_STRKINDEXERR Invalid stroke index.
PDR_USERDATAERR EPDS_USER was specified but there is no

per-stroke user data.
PDR_VERSIONERR Could not convert old pendata.

Comments
ExtractPenDataStrokes extracts strokes from an existing pen data object, optionally creating a new pen
data object made up of the extracted strokes. The extraction can be a copy or move process; that is, the
source pen data object can remain the same or contain only the remaining strokes not moved to the new
structure. Modifier flags in fuExtract specify how the value in lParam compares with attributes of the pen
data strokes (equal by default, greater than, less than, or none of these three).

If lphpndtNew is NULL, no pen data object is created. This is useful for modifying the original pen data
object hpndt (when EPDS_REMOVE specified), or simply for determining a return value without modifying
or creating a pen data object. If lphpndtNew is not NULL, the flags specified by gmemFlags are passed to
the GlobalAlloc function when memory for the pen data memory block is created.

If EPDS_REMOVE is specified, any strokes with an attribute matching the comparison criteria are
removed from the source pen data object, regardless of whether a new pen data is created. In the case of
inksets, this may actually generate more strokes if there are multiple intersections with the inkset within
any one stroke.

Example
To create an HPENDATA object consisting only of selected strokes:

ExtractPenDataStrokes(hpndt, EPDS_SELECT, 0, &hpndtDst, 0);

To return the count of selected strokes:

ExtractPenDataStrokes(hpndt, EPDS_SELECT, 0, NULL, 0);

To delete all but the selected strokes from the source:

ExtractPenDataStrokes(hpndt, EPDS_NOT | EPDS_SELECT | EPDS_REMOVE,
 0, NULL, 0);

To copy strokes 0 through 10 inclusive to a new HPENDATA object:

ExtractPenDataStrokes(hpndt, EPDS_LTE | EPDS_STROKE, 10,
 &hpndtDst, 0);

To move all but blue strokes to a separate HPENDATA object:

ExtractPenDataStrokes(hpndt, EPDS_NOT | EPDS_TIPCOLOR | EPDS_REMOVE,
 RGB_BLUE, &hpndtDst, 0);

See Also

DuplicatePenData

FirstSymbolFromGraph       

1.0 2.0

Retrieves an array of symbols that is the most likely interpretation of a specified symbol graph SYG.

void FirstSymbolFromGraph(LPSYG lpsyg, LPSYV lpsyv, int cSyvMax, LPINT lpcSyv)

Parameters
lpsyg

Address of the symbol graph.
lpsyv

Address of an empty array of SYV_ symbol values. FirstSymbolFromGraph fills this array with the
likeliest interpretation from the graph.

cSyvMax

Size of the array that lpsyv points to.
lpcSyv

Number of symbols returned in lpsyv. This value is 0 if lpsyg is empty. It is -1 if the buffer is not large
enough to hold the results.

Return Value
This function does not return a value.

Comments
The array of symbols is identical to the first string returned to the EnumSymbolsCallback callback
function of EnumSymbols.

See Also
EnumSymbols, SYG, SYV_

GetAlphabetHRC       

2.0

Retrieves the alphabet being used in a handwriting recognition context HRC.

int GetAlphabetHRC(HRC hrc, LPALC lpalc, LPBYTE rgbfAlc)

Parameters
hrc

Handle to the HRC object.
lpalc

Address of a buffer that receives the current ALC_ values. If NULL, this parameter is ignored.
rgbfAlc

Address of an array of bits or NULL. If NULL, this parameter is ignored. If lpalc contains
ALC_USEBITMAP and rgbfAlc points to a valid array, the array is filled according to the bits set by the
SetAlphabetHRC function.

Return Value
Returns HRCR_OK if successful; otherwise, returns one of the following negative values:

Constant Description
HRCR_ERROR Invalid parameter or other error.
HRCR_MEMERR Insufficient memory.
HRCR_UNSUPPORTE
D

The recognizer does not support this
function.

Comments
If rgbfAlc is not NULL, the array it points to must be large enough to accommodate 256 bits (32 bytes). If
the nth bit is set, the nth ANSI character is recognizable. Bits representing characters with ASCII values
less than 32 (the space character) currently have no meaning.

ALC_DEFAULT specifies the set of characters at or above ALC_SYSMINIMUM that the recognizer can
accurately distinguish.

For a description of alphabets and their relationship to a recognizer, see "Configuring the HRC" in
Chapter 5, "The Recognition Process."

See Also
EnableGestureSetHRC, SetAlphabetHRC, GetAlphabetPriorityHRC, ALC_

GetAlphabetPriorityHRC       

2.0

Retrieves the alphabet priority used in a handwriting recognition context HRC.

int GetAlphabetPriorityHRC(HRC hrc, LPALC lpalc, LPBYTE rgbfalc)

Parameters
hrc

Handle to the HRC object.
lpalc

Address of an ALC type that will be filled with the current ALC_ priority values.
rgbfalc

Address of a 256-bit (32-byte) buffer whose bits map to ANSI single-byte characters, or NULL if this
information is not required.

Return Value
Returns HRCR_OK if successful; otherwise, returns one of the following negative values:

Constant Description
HRCR_ERROR Invalid parameter or other error.
HRCR_MEMERR Insufficient memory.
HRCR_UNSUPPORTE
D

The recognizer does not support this
function.

For a description of how a recognizer uses alphabet priority, see "Configuring the HRC" in Chapter 5,
"The Recognition Process."

See Also
GetAlphabetHRC, SetAlphabetPriorityHRC, ALC_

GetAlternateWordsHRCRESULT       

2.0

Returns alternative word interpretations of a previous result. (Not supported in Japanese version.)

int GetAlternateWordsHRCRESULT(HRCRESULT hrcresult, UINT iSyv, UINT cSyv, LPHRCRESULT
rghrcresults, UINT cResults)

Parameters
hrcresult

Handle of a results object.
iSyv

Index of the first of a span of symbols within the results object.
cSyv

The number of symbols in the original result, starting at iSyv, for which alternative words are required.
rghrcresults

Address of a result array. This address cannot be NULL.
cResults

The size of the rghrcresults array in results. This parameter must be greater than 0.

Return Value
Returns the number of results actually provided, if successful. This can be less than the space allocated
in rghrcresults, and may be 0; otherwise, returns one of the following negative values:

Constant Description
HRCR_ERROR Invalid parameter or other error.
HRCR_MEMERR Insufficient memory.
HRCR_UNSUPPORTE
D

The recognizer does not support this
function.

Comments
GetAlternateWordsHRCRESULT provides alternative word interpretations of a previous result. The
alternatives returned are strongly coerced to words in the recognizer's dictionary, if enabled, and the word
list, if any, of the HRC that processed the results.

The span of symbols defined by iSyv and cSyv need not fall on word boundaries. However, the recognizer
returns only a single word per result. It is the application's responsibility to ensure that embedding a full
word within other symbols makes sense. (The application can also choose to let the user make that
decision.) For example, finding alternatives for "polce" in the phrase "pig-in-a-polce" could legitimately
return "poke" as an alternative, but alternatives for "kef" in "markefplace" would probably be meaningless.

See Also
GetResultsHRC

GetBoxMappingHRCRESULT       

2.0

Returns the box indices for a range of symbols.

int GetBoxMappingHRCRESULT(HRCRESULT hrcresult, UINT iSyv, UINT cSyv, UINT FAR * rgi)

Parameters
hrcresult

Handle of a results object.
iSyv

Index of the first symbol of interest in the results object.
cSyv

The number of symbols following iSyv for which box indices are required. Note that the array rgi must
be large enough to accommodate this many items of size UINT. A value of 0 is allowed, in which case
the function simply returns 0.

rgi

Address of an index array. The array must be large enough to store cSyv indices. This address
cannot be NULL.

Return Value
Returns the number of indices actually retrieved, if successful. This can be less than the space allocated
in rgi if iSyv indexes an element near the end of the results array, and is 0 if iSyv indexes a nonexistent
element; otherwise, returns one of the following negative values:

Constant Description
HRCR_ERROR Invalid parameter or other error.
HRCR_MEMERR Insufficient memory.
HRCR_UNSUPPORTE
D

The recognizer does not support this
function.

Comments
GetBoxMappingHRCRESULT is typically used with boxed input established by SetGuideHRC. If no
guide structure has been set, the recognizer will return HRCR_ERROR.

It is possible to allocate a small buffer in rgi and call GetBoxMappingHRCRESULT repeatedly,
incrementing the index iSyv each time by the number of indices returned in the previous call until
GetBoxMappingHRCRESULT returns 0.

See Also
GetResultsHRC, SetGuideHRC

GetBoxResultsHRC       

2.0

Encapsulates recognizer functionality for boxed input.

int GetBoxResultsHRC(HRC hrc, UINT cAlt, UINT iSyv, UINT cBoxRes, LPBOXRESULTS
rgBoxResults, BOOL fGetInkset)

Parameters
hrc

Handle to the HRC object used for the boxed input.
cAlt

Count of alternatives expected in the BOXRESULTS structure. If this parameter is 0, the function
returns 0.

iSyv

Index to the starting symbol.
cBoxRes

The count of BOXRESULTS structures that the rgBoxResults array can hold. This parameter must be
greater than 0.

rgBoxResults

Address of an array of BOXRESULTS structures.
fGetInkset

Flag to request inksets for each result if TRUE. If FALSE, the recognizer provides no inksets.

Return Value
Returns the count of BOXRESULTS elements returned in the rgBoxResults structure, if successful;
otherwise, returns one of the following negative values:

Constant Description
HRCR_ERROR Invalid parameter or other error.
HRCR_INVALIDGUIDE The guide structure is invalid.
HRCR_MEMERR Insufficient memory.
HRCR_HOOKED A hook preempted the result.
HRCR_UNSUPPORTE
D

The recognizer does not support this
function.

Comments
GetBoxResultsHRC simplifies the task of boxed recognition by providing character alternatives on a per-
box basis in one call.

If fGetInkset is TRUE, the recognizer assigns a valid inkset handle to the hinksetBox member of the
BOXRESULTS structure addressed by rgBoxResults. It is the application's responsibility to destroy these
inksets with DestroyInkset.

Example

The following code sample gets results for 10 boxes at a time, with five alternatives per box:

HANDLE hMem = GlobalAlloc(GHND, 10 * (sizeof(BOXRESULTS)
 + (5-1) * sizeof(SYV)));

LPBOXRESULTS rgBoxR = (LPBOXRESULTS)GlobalLock(hMem);
UINT indx = 0;

do
{
 int cRes = GetBoxResultsHRC(hrc, 5, indx, 10, rgBoxR, FALSE);

 .
 . // Check for errors and use rgBoxR
 .

 indx += (UINT)cRes;
}
while (cRes == 10);

See Also

GetBoxMappingHRCRESULT, GetResultsHRC, DestroyInkset

GetGlobalRC       

1.0 2.0

Queries the current default settings and fills an RC structure with the global values. In version 2.0 of the
Pen API, RC is made obsolete by the HRC object.

Note This function is provided only for compatibility with version 1.0 of the Pen API and will not be
supported in future versions.

UINT GetGlobalRC(LPRC lprc, LPSTR lpszDefRecog, LPSTR lpszDefDict, int cbDefDictMax)

Parameters
lprc

Address of an RC structure. This parameter can be NULL.
lpszDefRecog

Address of a character string in which the default recognizer module name is returned. This must be
at least 128 bytes long. This parameter can be NULL.

lpszDefDict

Buffer in which the default dictionary path is returned. This path ends with two null characters. This
parameter can be NULL.

cbDefDictMax

Size of lpszDefDict buffer to be filled.

Return Value
Returns GGRC_OK if successful; otherwise, the return value may be one of the following values:

Constant Description
GGRC_PARAMERROR One or more invalid parameters were

detected. The call to GetGlobalRC
has no effect.

GGRC_DICTBUFTOOSM
ALL

The size of the lpszDefDict buffer is
not large enough to contain the entire
dictionary path. The buffer is filled
with as many complete dictionary
module names as allowed by the
size. The list is terminated by a null
string.

Comments
GetGlobalRC fills the RC structure with global values. Values that have no default settings¾for example,
the bounding rectangle¾are set to 0.

An application does not need to call this function to use the default values. When an application initializes
an RC structure using InitRC, the system default values are set as the values for the structure members.
This function returns the actual current values for RC members. The InitRC function returns the default
values, which include placeholder values for some RC members.

See Also
InitRC, SetGlobalRC, RC

GetGuideHRC       

2.0

Retrieves the guide structure being used in a recognition context HRC.

int GetGuideHRC(HRC hrc, LPGUIDE lpguide, UINT FAR * lpnFirstVisible)

Parameters
hrc

Handle to the HRC object.
lpguide

Address of a GUIDE structure; all coordinates are in screen coordinates. This parameter cannot be
NULL.

lpnFirstVisible

Pointer to first visible character or line, or NULL. For boxed controls, this is the first visible box
(leftmost and topmost for left-right, top-down languages like English). For other controls, this is the
first visible character position (left-most for English) in a single-line control, and the first visible line
(topmost for English) in multiline controls.
If set to NULL, lpnFirstVisible is ignored.

Return Value
Returns HRCR_OK if successful; otherwise, returns one of the following negative values:

Constant Description
HRCR_ERROR Invalid parameter or other error.
HRCR_MEMERR Insufficient memory.
HRCR_UNSUPPORTE
D

The recognizer does not support this
function.

See Also
GUIDE, SetGuideHRC

GetHotspotsHRCRESULT       

2.0

Retrieves the hot spots for a particular symbol.

int GetHotspotsHRCRESULT(HRCRESULT hrcresult, UINT iSyv, LPPOINT lppt, UINT cPnts)

Parameters
hrcresult

Handle of a results object.
iSyv

Index of the symbol in the results object.
lppt

Address of an array of up to MAXHOTSPOT POINT structures.
cPnts

Actual size of lppt array in points.

Return Value
If successful, returns the count of hot spots; otherwise, returns one of the following negative values:

Constant Description
HRCR_ERROR Invalid parameter or other error.
HRCR_MEMERR Insufficient memory.
HRCR_UNSUPPORTE
D

The recognizer does not support this
function.

Comments
Any symbol can have hot spots, but they are usually of interest only for gestures. For example, if the user
writes "X" for deletion, the center of the "X"¾its hotspot ¾points to the item to be deleted. Hot spots are
returned in tablet coordinates. The maximum number of hot spots allowed is provided in the PENWIN.H
constant MAXHOTSPOT. The Microsoft Handwriting Recognizer (GRECO.DLL), supports this function for
gesture symbols only.

If cPnts is smaller than the actual number of hot spots, only cPnts points are reported.

GetHRECFromHRC       

2.0

Retrieves a handle to the recognizer bound to an HRC object. A recognizer must export this function.

HREC GetHRECFromHRC(HRC hrc)

Parameters
hrc

Handle to the HRC object.

Return Value
If successful, returns the handle to the recognizer used for the HRC object; otherwise, returns NULL.

See Also
CreateCompatibleHRC, InstallRecognizer

GetInksetInterval       

2.0

Retrieves an interval from an inkset.

int GetInksetInterval(HINKSET hinkset, UINT uIndex, LPINTERVAL lpi)

Parameters
hinkset

Handle to an inkset.
uIndex

Zero-based index of an interval or IX_END.
lpi

Pointer to an INTERVAL structure. This can be NULL if the user merely wishes to find out how many
intervals are in the inkset.

Return Value
GetInksetInterval returns the number of intervals in the inkset if successful; otherwise, the return value
can be one of the following negative values:

Constant Description
ISR_ERROR The inkset handle is bad, or a parameter

error.
ISR_BADINDEX The interval index is bad.
ISR_BADINKSET The inkset has been corrupted or contains

bad intervals.

Comments
An application can use GetInksetInterval to enumerate all the intervals in an inkset.

See Also
GetInksetIntervalCount, INTERVAL

GetInksetIntervalCount       

2.0

Returns the number of intervals in an inkset.

int GetInksetIntervalCount(HINKSET hinkset)

Parameters
hinkset

Handle to an inkset.

Return Value
Returns the number of intervals in the inkset is successful; otherwise, the return value can be one of the
following negative values:

Constant Description
ISR_ERROR The inkset handle is bad, or a parameter

error.
ISR_BADINKSET The inkset has been corrupted or contains

bad intervals.

Comments
An application uses GetInksetIntervalCount to determine how many intervals there are to enumerate in
an inkset. This function can also be used to verify that an inkset is valid.

See Also
GetInksetInterval

GetInternationalHRC
2.0

Retrieves the country, language, script direction, and international preferences from a recognition context
HRC object.

int GetInternationalHRC(HRC hrc, UINT FAR * lpuCountry, LPSTR lpszLangCode, UINT FAR *
lpfuFlags, UINT FAR * lpuDir)

Parameters
hrc

Handle to the HRC object.
lpuCountry

The country code, or NULL to ignore this value.
lpszLangCode

A buffer large enough to receive a three-letter string (that is, 4 bytes) identifying the language ("enu",
"fra", etc.). If set to NULL, lpszLangCode is ignored.

lpfuFlags

A pointer to a flags value or NULL to ignore this value. If GetInternationalHRC returns
SIH_ALLANSICHAR in lpfuFlags, it means that the user intends to use the entire ANSI character set.
If this is the case, the application should ignore the value returned in lpszLangCode, since all the
ANSI-based languages are undifferentiated.

lpuDir

Address of a value for the script direction, or NULL to ignore this value. This value specifies which
primary and secondary writing directions are in use. Possible values are:

Constant Description
SSH_RD To right and down (English).
SSH_RU To right and up.
SSH_LD To left and down (Hebrew).
SSH_LU To left and up.
SSH_DL Down and to the left (Chinese).
SSH_DR Down and to the right (Chinese).
SSH_UL Up and to the left.
SSH_UR Up and to the right.

Return Value
Returns HRCR_OK if successful; otherwise, returns one of the following negative values:

Constant Description
HRCR_ERROR Invalid parameter or other error.
HRCR_MEMERR Insufficient memory.
HRCR_UNSUPPORTE
D

The recognizer does not support this
function.

See Also
SetInternationalHRC

GetMaxResultsHRC       

2.0

Gets the maximum number of recognition results that a recognizer can generate in the current
handwriting recognition context HRC object.

int GetMaxResultsHRC(HRC hrc)

Parameters
hrc

Handle to the HRC object.

Return Value
If successful, returns the maximum number of recognition results as a positive number; otherwise, returns
one of the following negative values:

Constant Description
HRCR_ERROR Invalid parameter or other error.
HRCR_MEMERR Insufficient memory.

Comments
The default maximum number of results a recognizer can return is 1. An application must call
SetMaxResultsHRC to set a different maximum value.

See Also
SetMaxResultsHRC

GetPenAppFlags       

2.0

GetPenAppFlags returns task pen flags cached by RegisterPenApp.

UINT GetPenAppFlags()

Return Value
GetPenAppFlags returns the flags set by RegisterPenApp for the current task. It extends and replaces
the functionality of the version 1.0 function IsPenAware, which will not be supported in future versions of
the Pen API.

Applications written specifically for Windows 95 and later versions automatically get RPA_DEFAULT so
that any edit controls created by such applications automatically become pen-aware.

If the registration cache has been destroyed (which indicates PENWIN.DLL has been unloaded), this
function returns 0.

See Also
RegisterPenApp, IsPenAware

GetPenAsyncState       

1.0 2.0

Gets the state of the pen barrel button.

BOOL GetPenAsyncState(UINT wPDK)

Parameters
wPDK

One of the PDK_ values for the barrel buttons. The following table lists the PDK_ values that
GetPenAsyncState can query for:

Constant Description
PDK_BARREL1 Get state of barrel button 1.
PDK_BARREL2 Get state of barrel button 2.
PDK_BARREL3 Get state of barrel button 3.

Return Value
Returns TRUE if the specified barrel button state is currently down; otherwise, the return value is FALSE.

GetPenDataAttributes       

2.0

Retrieves information about an HPENDATA object.

int GetPenDataAttributes(HPENDATA hpndt, LPVOID lpvBuffer, UINT uOption)

Parameters
hpndt

Handle to the HPENDATA object.
lpvBuffer

Pointer to a structure whose type depends on uOption, or NULL if the uOption parameter does not
require this buffer.

uOption

Specifies the attributes to retrieve. This parameter can be one of the following:
Constant Description
GPA_MAXLEN Retrieves the length (in points) of the

longest stroke. lpvBuffer is unused and
ignored.

GPA_POINTS Retrieves the total number of points.
lpvBuffer is unused and ignored.

GPA_PDTS Retrieves the PDTS_ bits. lpvBuffer is
unused and ignored.

GPA_RATE Retrieves the sampling rate in samples
per second. lpvBuffer is unused and
ignored.

GPA_RECTBOUND Retrieves the bounding rectangle of all
pen-down points. lpvBuffer is the
address of a RECT structure.

GPA_RECTBOUNDINK Like GPA_RECTBOUND, retrieves the
bounding rectangle of all pen-down
points, but inflates the rectangle to
accommodate ink width. lpvBuffer is the
address of a RECT structure.

GPA_SIZE Retrieves the size of the pen data
memory block in bytes. Because of the
potential large size of this value, the
return value of the function is not used.
Instead, lpvBuffer is the address of a
DWORD variable to fill with the size.

GPA_STROKES Retrieves the total number of strokes,
including pen-up strokes. lpvBuffer is
unused and ignored.

GPA_TIME Retrieves the absolute time of creation of
the pen data. lpvBuffer is the address of
an ABSTIME structure.

GPA_USER Retrieves the number of user bytes

available per stroke: 0, 1, 2, or 4.
lpvBuffer is unused and ignored.

GPA_VERSION Retrieves the version number of the pen
data. lpvBuffer is unused and ignored.

Return Value
Returns PDR_OK or an integer value if successful, depending on the uOption parameter.

Comments
GetPenDataAttributes provides enhancements of some of the capabilities of GetPenDataInfo. It also
provides additional detailed information taken from the HPENDATA block.

See Also
GetStrokeAttributes, GetPenDataInfo

GetPenDataInfo       

1.0 2.0

This function retrieves information from an HPENDATA memory block. It is superseded by the
GetPenDataAttributes function.

BOOL GetPenDataInfo(HPENDATA hpndt, LPPENDATAHEADER lppdh, LPPENINFO lppeninfo,
DWORD dwReserved)

Parameters
hpndt

Handle to a pen data object that receives the pen data information.
lppdh

Address of a PENDATAHEADER structure, or NULL if not required.
lppeninfo

Address of a PENINFO structure, or NULL if not required.
dwReserved

Reserved for future use. Must be set to 0.

Return Value
Returns TRUE if successful. The return value is FALSE if invalid parameters are used, or if the handle to
the pen data is invalid, or if the requested PENINFO does not exist in the pen data.

Comments
This function retrieves the header and pen information in the pen data memory block. If lppeninfo is not
NULL and the pen data does not contain pen information, the contents of lppeninfo are not changed. The
wPndts member in the PENDATAHEADER structure can be checked to see if the HPENDATA object
has a PENINFO structure associated with it (a value of PTDS_NOPENINFO indicates not). The amount
of data allocated is contained in the cbSizeUsed member of the PENDATAHEADER structure.

See Also
GetPenDataAttributes

GetPenDataStroke       

1.0 2.0

Returns a pointer to stroke data contained in an HPENDATA memory block previously locked with the
BeginEnumStrokes function.

Note This function is provided only for compatibility with version 1.0 of the Pen API and will not be
supported in future versions. Use other services such as GetPenDataAttributes,
GetPointsFromPenData, or GetStrokeAttributes to examine an HPENDATA block.

BOOL GetPenDataStroke(LPPENDATA lppd, UINT iStrk, LPPOINT FAR * lplppt, LPVOID FAR *
lplpvOem, LPSTROKEINFO lpsi)

Parameters
lppd

Address of the HPENDATA memory block. This parameter is the value returned by a previous call to
the BeginEnumStrokes function.

iStrk

Zero-based index of the stroke to retrieve.
lplppt

Address of a pointer to a point. The pointer returned by the function will point to the first point of the
stroke inside the pen data object. This parameter can be NULL if point data is not required.

lplpvOem

Address of a void pointer. The pointer returned by the function will point to the OEM data block of the
stroke inside the pen data object. The format of the OEM data is specified by the rgoempeninfo
member in the PENINFO structure. This parameter can be NULL if OEM data is not required.

lpsi

Address of a STROKEINFO structure. This parameter can be NULL if stroke information is not
required.

Return Value
Returns TRUE if successful. If the stroke requested is out of range, the function returns FALSE.

Comments
GetPenDataStroke returns in lpsi a pointer to a STROKEINFO structure created from the stroke
referenced by iStrk. The lpsi parameter does not point directly into the HPENDATA memory block.

However, the lplppt argument points to the first point of the stroke inside the HPENDATA block. For a
description of how the GetPenDataStroke function has changed in version 2.0 of the Pen API, refer to
AppendixA.

Applications must call BeginEnumStrokes before calling GetPenDataStroke. After the last call to
GetPenDataStroke, the application must call EndEnumStrokes. Once EndEnumStrokes is called, the
data that lplppt and lplpvOem point to is no longer valid.

Under no circumstances should an application modify data directly within an HPENDATA block. Doing so

can invalidate other information in the block. To modify an HPENDATA block, use one of the Pen API
functions listed in Chapter 4, "The Inking Process."

See Also
BeginEnumStrokes, EndEnumStrokes, GetStrokeAttributes

GetPenHwEventData       

1.0 2.0

Gets the pen data associated with events in a given range.

Note This function is provided only for compatibility with version 1.0 of the Pen API and will not be
supported in future versions. Use DoDefaultPenInput or GetPenInput instead.

REC GetPenHwEventData(UINT wEventRefBeg, UINT wEventRefEnd, LPPOINT lppt, LPVOID
lpvOemData, int cPntMax, LPSTROKEINFO lpsi)

Parameters
wEventRefBeg

Beginning pen event.
wEventRefEnd

Ending pen event.
lppt

Address of a an array of POINT structures. The size of the array must be at least sizeof(POINT)
multiplied by cPntMax.

lpvOemData

Buffer to fill with OEM-specific data. This can be NULL if no data is required.
cPntMax

Maximum number of samples to return.
lpsi

Address of a STROKEINFO structure that receives the stroke information, including the count of
points and point state. Also included is the time stamp of the first point returned in the buffer, which is
the number of milliseconds that have elapsed since Windows started.

Return Value
Returns REC_OK if successful; otherwise, the return value can be one of the following:

Constant Description
REC_BUFFERTOOSM
ALL

The array identified by lppt is not large
enough to hold all the points requested.

REC_PARAMERROR Invalid parameter.

Comments
This function fetches all data collected from the pen event wEventRefBeg up to but not including the pen
event wEventRefEnd. If wEventRefBeg equals wEventRefEnd, GetPenHwEventData retrieves the single
pen event associated with wEventRefBeg.

The values for wEventRefBeg and wEventRefEnd are obtained by calling the Windows
GetMessageExtraInfo function.

This function can be called directly from an application. If it returns REC_BUFFERTOOSMALL, no data is
returned and the cPnt member of lpsi contains the number of points between wEventRefBeg and
wEventRefEnd. If REC_OK is returned, the cPnt member contains the number of valid points placed in
the array at lppt.

See Also
STROKEINFO

GetPenInput       

2.0

Collects data after StartPenInput has started pen input.

int GetPenInput(HPCM hpcm, LPPOINT lppt, LPVOID lpvOem, UINT fuOemFlags, UINT cPntMax,
LPSTROKEINFO lpsi)

Parameters
hpcm

Handle to the current collection. This is the return value from StartPenInput.
lppt

Address of an array of POINT structures. The array must consist of at least cPntMax structures.
lpvOem

The address of a buffer of OEM data associated with each point. This parameter can be NULL if the
application does not require OEM data.

fuOemFlags

Flags specifying which OEM data to retrieve. If this parameter is NULL, all OEM data provided by the
tablet is returned in the order specified by the rgoempeninfo array in PENINFO.
These flags have an implicit order. For example, if pressure and barrel rotation are specified, cPntMax
pairs of these data are returned, in the order [pressure, rotation], [pressure, rotation], and so on.

Constant Description
PHW_PRESSURE Retrieve pressure data.
PHW_HEIGHT Retrieve height data.
PHW_ANGLEXY Retrieve data pertaining to

the x- and y-coordinates.
PHW_ANGLEZ Retrieve data pertaining to

the z-coordinates.
PHW_BARRELROTATION Retrieve barrel-rotation data.
PHW_OEMSPECIFIC Retrieve OEM-specific data.
PHW_PDK Retrieve per-point PDK_

information in OEM data.

cPntMax

The number of POINT structures in the array at lppt. This is the maximum number of points to return
and also the maximum number of OEM items the buffer at lpvOem can hold.

lpsi

A pointer to a STROKEINFO structure. This structure receives information about the first point of the
collection of points placed into the array at lppt. The cbPnts member contains the packet ID of the
first point. All returned points in the collection have the same tip polarity (that is, up or down) as the
first point.

Return Value
Returns 0 if there are no points available. If the return value is positive, the value is the number of points

copied to the lppt (and, optionally, lpvOem) buffers. Otherwise, the return value is one of the following:

Constant Description
PCMR_APPTERMINATED Input has already terminated

because the application called
StopPenInput. There are no more
points to retrieve.

PCMR_EVENTLOCK An event must be taken out of the
queue using the Windows
functions PeekMessage or
GetMessage before any more
points can be retrieved using
GetPenInput.

PCMR_INVALIDCOLLECTION The hpcm handle is invalid
because the calling application did
not start input with StartPenInput.

PCMR_TERMTIMEOUT Input has already terminated
because the specified time-out
period has elapsed.

PCMR_TERMRANGE Input has already terminated
because the pen has left the range
of the tablet's zone of sensitivity.

PCMR_TERMPENUP Input has already terminated
because the pen was lifted from
the tablet.

PCMR_TERMEX Input has already terminated
because the pen went down in a
specified exclusion rectangle or
region.

PCMR_TERMBOUND Input has already terminated
because the pen went down
outside a specified bounding
rectangle or region.

Comments
Once an application initiates pen-input collection by calling StartPenInput, the application then calls the
GetPenInput function frequently to retrieve the actual data arriving from the pen device. This can be done
by responding to hardware events or by continuously polling.

In the polling model, the application repeatedly calls GetPenInput to get data. It is important for the
application to yield periodically; for example, by calling PeekMessage. A fast loop can potentially process
the points before the system can collect more. In this case, successive calls to GetPenInput return 0 until
the user writes some more. Polling is typically terminated when GetPenInput detects and returns a
termination condition specified in StartPenInput.

In the event model, the application calls GetPenInput on receipt of a WM_PENEVENT message. All
points up to this event are returned to the caller. An application can retrieve all available data in a short
loop, until GetPenInput returns PCMR_EVENTLOCK. The application then falls out of the loop and exits
the window procedure. The process begins again when the window procedure is called in response to
another WM_PENEVENT message in the application's message queue.

If lpvOem is not NULL, the buffer must be large enough to hold cPntMax OEM data packets. The size of
each packet is the width specified in the cbOemData member of the PENINFO structure, plus
sizeof(UINT) if PDK_ values are required.

Example
The following code example gathers more pen input for use by the recognizer. Assume the application
has already called StartPenInput and is using the messaging collection model.

POINT rgPnt[cbBuffer];
STROKEINFO si;

// ... in WM_PENEVENT message handler:

switch (wParam)
{

.

.

.
case PE_PENUP:
case PE_PENMOVE:
case PE_TERMINATING:

// Get all the points collected since the last message

while ((iRet = GetPenInput(hpcm, rgPnt, NULL, 0,
 cbBuffer, &si)) > 0)

{

// Add pen data to recognition context and def process

AddPenInputHRC(vhrc, rgPnt, NULL, 0, &si);
ProcessHRC(vhrc, PH_DEFAULT);

}
break;

See Also

PeekPenInput, StartPenInput, PDK_

GetPenResource       

2.0

The GetPenResource function retrieves a copy of a pen services resource. (Japanese version only.)

HANDLE GetPenResource(WPARAM wParam)

Parameters
wParam

Specifies the pen services resource for which to retrieve a handle. This may be one of the following:
Constant Description
GPR_CURSPEN Standard pen cursor.
GPR_CURSCOPY Copy cursor.
GPR_CURSUNKNOW
N

Unknown cursor.

GPR_CURSERASE Erase cursor.
GPR_BMCRMONO Monochrome Return bitmap.
GPR_BMLFMONO Monochrome LineFeed bitmap.
GPR_BMTABMONO Monochrome Tab bitmap.
GPR_BMDELETE Delete bitmap.
GPR_BMLENSBTN Lens buttonface bitmap.
GPR_BMHSPMONO Hankaku space bitmap (Japanese version

only).
GPR_BMZSPMONO Zenkaku space bitmap (Japanese version

only).

Comments
An application can use this function to get a copy of a cursor or bitmap used by pen services. It is the
application's responsibility to destroy the object by calling either the DestroyCursor or DeleteObject
Windows API.

Return Value
This function returns a handle to an object, depending on the index specified by wParam if successful.
Otherwise the return value is NULL.

GetPenMiscInfo       

1.0 2.0

Retrieves values pertaining to the pen system.

LONG GetPenMiscInfo(WPARAM wParam, LPARAM lParam)

Parameters
wParam

Specifies the identifier of the pen system value to retrieve. The pen system identifier must be a PMI_
value. See the table below for the possible PMI_ values in wParam.

lParam

Address of storage for data. This must not be NULL. The calling application must ensure that there is
sufficient room to store the requested information. The type of storage object that lParam points to
depends on wParam, as described in the following table. For each value of wParam in the first
column, the second column describes the corresponding requirement for lParam:

wParam constant LParam description
PMI_BEDIT lParam is the address of a BOXEDITINFO

structure. Boxed edit information.
PMI_CXTABLET lParam is a far pointer to a UINT value

specifying the width of tablet (in units of
0.001 inch) if present; otherwise, the
width of the screen.

PMI_CYTABLET lParam is a far pointer to a UINT value
specifying the height of tablet (in units of
0.001 inch) if present; otherwise, the
height of the screen.

PMI_INDEXFROMRG
B

lParam is a far pointer to a DWORD value.
On entry, lParam is the address of an RGB
ink color value. On return, the low-order
word of lParam is replaced with an index in
the range 0 to 15 for the closest standard
ink color and the high-order word is 0.

PMI_ENABLEFLAGS lParam is a far pointer to a WORD value
containing a flag describing whether certain
Pen API features are enabled. The flags
can be a combination of the following
values:
PWE_AUTOWRITE Enable pen
functionality where the I-Beam cursor is
present.
PWE_ACTIONHANDLES Enable action
handles in controls.
PWE_INPUTCURSOR Show cursor
while writing.
PWE_LENS Enable pop-up letter guides
(that is, the lens).

PMI_PENTIP lParam is the address of a PENTIP
structure.

PMI_RGBFROMINDE
X

lParam is the address of a DWORD value.
On entry, lParam is the address of an index
in the range 0 to 15; on return, this value at
this address is replaced with the standard
RGB ink color value.

wParam constant LParam description
PMI_SYSFLAGS lParam is a far pointer to a WORD value

containing a flag describing which pen
system components are loaded. The flags
can be a combination of the following
values:
PWF_RC1 Support available for Pen API
version 1.0 Recognition Context (RC) and
associated functions.
PWF_PEN Pen/tablet hardware is
present.
PWF_INKDISPLAY Ink-compatible
display driver is present.
PWF_RECOGNIZER System recognizer
is present.
PWF_BEDIT Boxed edit (bedit) control is
available.
PWF_HEDIT Handwriting edit (hedit)
control is available.
PWF_IEDIT Ink edit (iedit) control is
available.
PWF_ENHANCED Enhanced features,
including gesture support and 1 millisecond
timing, are available.
PWF_FULL All components listed above
are present..

PMI_SYSREC lParam is a far pointer to an HREC value
which is the handle of the system
recognizer, if present.

PMI_TICKREF lParam is the address of an ABSTIME
structure indicating the absolute reference
time that the system uses to calculate time-
stamps for strokes in pen data objects and
inkset

PMI_TIMEOUT lParam is a far pointer to a UINT value
indicating time-out value to end hand-
writing input, in milliseconds.

PMI_TIMEOUTGEST lParam is a far pointer to a UINT value
indicating time-out value to end a gesture,
in milliseconds.

PMI_TIMEOUTSEL lParam is a far pointer to a UINT value
indicating the time-out value in milli-
seconds for press-and-hold gesture. The
range of permissible values is 0 to 5000. If
press-and-hold has been disabled, this
value is 65,535.

Return Value

The return value is PMIR_OK if successful; otherwise it is one of the following negative error values:

Constant Description
PMIR_INDEX wParam is out of range.
PMIR_NA Support for this value of wParam is not

available.
PMIR_VALUE lParam is NULL or a invalid pointer.

Comments
The information type returned varies depending on the index. Note that if a UINT is expected, for
example, it is an error to provide the address of a DWORD variable without explicitly setting the HIWORD
to 0. This function only sets the LOWORD in this case, and since the variable is usually declared on the
stack, there would be an unknown value in the HIWORD. See the examples below.

If wParam is PMI_INDEXFROMRGB or PMI_RGBFROMINDEX, the standard pen-tip color table is as
follows:

00 black RGB(0, 0, 0)
01 dark blue RGB(0, 0, 127)
02 dark green RGB(0, 127, 0)
03 dark cyan RGB(0, 127, 127)
04 dark red RGB(127, 0, 0)
05 purple RGB(127, 0, 127)
06 brown RGB(127, 127, 0)
07 gray RGB(127, 127, 127)
08 light gray RGB(192, 192, 192)
09 blue RGB(0, 0, 255)
10 green RGB(0, 255, 0)
11 cyan RGB(0, 255, 255)
12 red RGB(255, 0, 0)
13 magenta RGB(255, 0, 255)
14 yellow RGB(255, 255, 0)
15 white RGB(255, 255, 255)

Example

The following code sample retrieves the timeout and pen tip:

UINT uTimeout;
PENTIP tip;

GetPenMiscInfo(PMI_TIMEOUT, (LPARAM)(UINT FAR *)&utimeout);
GetPenMiscInfo(PMI_PENTIP, (LPARAM)(LPPENTIP)&tip);

Note that the following is an error, since the HIWORD is undefined:

DWORD dwTimeout;

GetPenMiscInfo(PMI_TIMEOUT, (LPARAM)&dwtimeout); // Wrong!

See Also

SetPenMiscInfo, PMI_

GetPointsFromPenData       

1.0 2.0

Retrieves a specified range of points.

BOOL GetPointsFromPenData(HPENDATA hpndt, UINT iStrk, UINT iPnt, UINT cPnts, LPPOINT lppt)

Parameters
hpndt

Handle to a pen data object.
iStrk

The zero-based stroke index from which points are retrieved.
iPnt

First point to retrieve from the specified stroke.
cPnts

Number of points to retrieve. If this value is 0, the function returns TRUE.
lppt

Address of buffer to fill with points.

Return Value
Returns TRUE if successful, or FALSE if the requested points are out of range.

Comments
GetPointsFromPenData performs a function similar to GetPenDataStroke in that it retrieves information
from an HPENDATA memory block. But GetPointsFromPenData copies the required data to buffers
supplied by the application, rather than simply returning pointers to the original data in the global heap.

An application can also request a copy of a particular subset of points within a stroke. In this case, iPnt
identifies the first point and cPnts is the number of points to retrieve. This allows an application to digest
the points in an HPENDATA block a few at a time to avoid having to allocate a large block of memory for
the entire set of points.

GetPointsFromPenData returns the last point in a stroke if the iPnt argument is set to a value larger than
the total number of points in the stroke. In the same manner, the function returns the points of the last
stroke if iStrk exceeds the total number of strokes in the HPENDATA block. If the count of points to return
is 1 and iPnt is beyond the last point in the stroke, the function returns the last point in the stroke.

See Also
GetPenDataStroke

GetResultsHRC       

2.0

Retrieves results from a recognition context HRC. A recognizer must export this function.

int GetResultsHRC(HRC hrc, UINT uType, LPHRCRESULT rghrcresults, UINT cResults)

Parameters
hrc

Handle to the HRC object.
uType

Specifies the type of expected results. This can be one of the following values:
Constant Description
GRH_ALL Return all results.
GRH_GESTURE Return results of type gesture

only.
GRH_NONGESTURE Return all results not of type

gesture.

rghrcresults

Address of an array of HRCRESULT objects.
cResults

The size of the rghrcresults array, in objects. The actual size in bytes can be calculated by multiplying
cResults by the size of HRCRESULT. This parameter must be greater than 0.

Return Value
Returns the actual number of results returned if successful. This can be 0; otherwise, returns one of the
following negative values:

Constant Description
HRCR_ERROR Invalid parameter or other error.
HRCR_HOOKED A hook preempted the result.
HRCR_MEMERR Insufficient memory.

Comments
The actual number of results returned by this function may be less than the number specified by cResults.
It is also less than or equal to the count specified at the creation of hrc by the cMaxResults parameter in
SetMaxResultsHRC, regardless of the size of the rghrcresults array.

A return value of 0 indicates that the recognizer was not able to recognize any of the input, even if
coerced by a word list set into the HRC. A recognizer should never return a result consisting entirely of
SYV_UNKNOWN symbols.

The calling application must explicitly destroy each valid result using DestroyHRCRESULT. However, if
the return value is 0 or negative, the contents of the rghrcresults array are undefined (though not NULL)
and DestroyHRCRESULT must not be called.

See Also
DestroyHRCRESULT

GetStrokeAttributes       

2.0

Retrieves information about a stroke in an HPENDATA object.

int GetStrokeAttributes(HPENDATA hpndt, UINT iStrk, LPVOID lpvBuffer, UINT uOption)

Parameters
hpndt

Handle to the HPENDATA object, which must not be compressed.
iStrk

Zero-based stroke index. If there are no strokes in the pen data, an index of 0 can be used to retrieve
the default attributes for the pen data. A value of IX_END specifies the last available stroke in the pen
data.

lpvBuffer

Pointer to a structure whose type depends on uOption, or NULL if the uOption parameter does not
require this buffer.

uOption

Specifies the attributes to retrieve. This parameter has one of the following values:
Constant Description
GSA_DOWN Retrieve the up/down state of the pen tip

for this stroke. Returns 1 if the stroke is a
down-stroke or 0 if it is an up-stroke.
lpvBuffer is unused and ignored.

GSA_PENTIP Retrieve the pen-tip characteristics (color,
width, nib) used by the stroke specified by
iStrk. lpvBuffer is a pointer to a PENTIP
structure. Return value is PDR_OK.

GSA_PENTIPCLASS Retrieve the pen-tip characteristics (color,
width, nib), if any, for the class of strokes of
which the stroke specified by iStrk is a
member. lpvBuffer is a pointer to a
PENTIP structure. Return value is
PDR_OK.

GSA_RECTBOUND Retrieve the bounding rectangle of the
specified stroke. lpvBuffer is a pointer to a
RECT structure. Return value is PDR_OK.

GSA_SELECT Retrieve the selection status of the
specified stroke. lpvBuffer is unused and
ignored. Returns a nonzero value if the
stroke is selected; otherwise, the return
value is 0.

GSA_SIZE Retrieve size of stroke in points and bytes.
lpvBuffer is a pointer to a double-word
value, or NULL.
LOWORD(*(LPDWORD)lpvBuffer) is the
size in points, and

HIWORD(*(LPDWORD)lpvBuffer) is the
size in bytes. Return value is PDR_OK.

GSA_TIME Retrieve the absolute time of the stroke.
lpvBuffer is a pointer to an ABSTIME
structure; it cannot be NULL. The sec field
specifies the number of seconds since Jan
1, 1970, and the ms field specifies the
number of milliseconds offset from that
time to the beginning of the stroke. Return
value is PDR_OK.

GSA_USER Retrieve the user value, if any, for the
stroke. lpvBuffer is a pointer to a double-
word value, or NULL. Returns the number
of bytes of user data available in the
stroke: 0, 1, 2, or 4.

GSA_USERCLASS Retrieve the user value, if any, for the class
of strokes of which the stroke specified by
iStrk is a member. lpvBuffer is a pointer to
a double-word value, or NULL. The return
value is 4 because the user value in the
strokes class table is a doubleword value.

Return Value
Returns PDR_OK or an integer value if successful, as described for the uOption parameter. If an error
occurs, returns one of the following:

Constant Description
PDR_COMPRESSED Pen data is compressed.
PDR_ERROR Parameter or other unspecified error.
PDR_MEMERR Memory error.
PDR_PNDTERR Invalid pen data.
PDR_STRKINDEXERR Invalid stroke index.
PDR_TIMESTAMPERR Timing information was removed.
PDR_VERSIONERR Could not convert old pen data.

See Also
CreatePenDataEx, GetStrokeTableAttributes, SetStrokeAttributes, SetStrokeTableAttributes,
PENTIP

GetStrokeTableAttributes       

2.0

Retrieves information about a stroke's class from the table in the PENDATAHEADER of an HPENDATA
object.

int GetStrokeTableAttributes(HPENDATA hpndt, UINT iTblEntry, LPVOID lpvBuffer, UINT uOption)

Parameters
hpndt

Handle to the HPENDATA object, which must not be compressed.
iTblEntry

Zero-based table index to the class entry in the pen data header.
lpvBuffer

Pointer to a structure whose type depends on uOption, or NULL if the uOption parameter does not
require this buffer.

uOption

Specifies the attributes to retrieve. This parameter can be one of the following:
Constant Description
GSA_PENTIPTABLE Retrieve the pen-tip characteristics (color,

width, nib) of the class of strokes specified
by iTblEntry. lpvBuffer is a pointer to a
PENTIP structure. Return value is the
number of strokes using this class.

GSA_SIZETABLE Retrieve the number of entries in the stroke
class table. iTblEntry and lpvBuffer are
unused and ignored. Return value is the
number of classes used in the stroke class
table.

GSA_USERTABLE Retrieve the user value, if any, of the class of
strokes specified by iTblEntry. lpvBuffer is a
pointer to a doubleword value, or NULL. The
number of bytes that are valid in lpvBuffer
depends on flags set in CreatePenDataEx.
This number is returned by the function, and
can be 0 (no user value), 1 (byte value),
2 (word value), or 4 (doubleword value).
Return value
is 4, because the user value in the stroke
class table
is a doubleword value.

Return Value
Returns an integer if successful, depending on the value of uOption, as described above. If an error
occurs, returns one of the following:

Constant Description

PDR_COMPRESSED Pen data is compressed.
PDR_ERROR Parameter or other unspecified error.
PDR_MEMERR Memory error.
PDR_PNDTERR Invalid pen data.
PDR_VERSIONERR Could not convert old pen data.

See Also
CreatePenDataEx, GetStrokeAttributes, SetStrokeAttributes, SetStrokeTableAttributes, PENTIP

GetSymbolCount       

1.0 2.0

Returns the number of symbol strings contained in a symbol graph SYG.

int GetSymbolCount(LPSYG lpsyg)

Parameters
lpsyg

Address of the symbol graph.

Return Value
Returns the number of possible symbol strings that can be generated from the symbol graph. Returns -1
for any graph that can generate more than 32,767 symbol strings, or if there is a parameter error.

Example
For example, if the symbol graph pointed to by lpsyg is

ex {a | u} mple

GetSymbolCount returns the value 2 because the graph contains two symbol strings ("example" and
"exumple").

See Also
EnumSymbols, FirstSymbolFromGraph, GetSymbolMaxLength SYG, SYV_

GetSymbolCountHRCRESULT       

2.0

Retrieves the count of symbols available in a recognition result. A recognizer must export this function.

int GetSymbolCountHRCRESULT(HRCRESULT hrcresult)

Parameters
hrcresult

Handle of a results object.

Return Value
Returns the count of symbols if successful; otherwise, returns one of the following negative values:

Constant Description
HRCR_ERROR Invalid parameter or other error.
HRCR_MEMERR Insufficient memory.

Comments
This function is typically called before GetSymbolsHRCRESULT to determine the size of a buffer
required to store the symbol values returned in a recognition result. To calculate the size of the buffer,
multiply the value returned by this function by sizeof(SYV).

See Also
GetSymbolsHRCRESULT, SYV_

GetSymbolMaxLength       

1.0 2.0

Returns the length of the longest symbol string contained in a symbol graph SYG.

int GetSymbolMaxLength(LPSYG lpsyg)

Parameters
lpsyg

Address of the symbol graph.

Return Value
Returns the number of symbols in the longest symbol string that can be generated from the symbol graph,
or -1 if there is a parameter error.

Example
For example, if the symbol graph pointed to by lpsyg is

ab {c | de} f

GetSymbolMaxLength returns 5 because the longest string is "abdef".

See Also
EnumSymbols, FirstSymbolFromGraph, SYG, SYV_

GetSymbolsHRCRESULT       

2.0

Retrieves an array of symbol values corresponding to a recognition result. A recognizer must export this
function.

int GetSymbolsHRCRESULT(HRCRESULT hrcresult, UINT iSyv, LPSYV rgsyv, UINT cSyv)

Parameters
hrcresult

Handle of a results object.
iSyv

Index of the first symbol of interest in the results object.
rgsyv

Address of a buffer in which to put the symbols. The array must be large enough to store cSyv
symbols.

cSyv

The size of rgsyv in symbols (not bytes). This is the number of symbols to be returned. A value of 0 is
legal, in which case the function simply returns 0.

Return Value
Returns the count of symbols copied, if successful; otherwise, returns one of the following negative
values:

Constant Description
HRCR_ERROR Invalid parameter or other error.
HRCR_MEMERR Insufficient memory.

Comments
It is possible to allocate a small buffer in rgsyv and call this function repeatedly, incrementing the index
iSyv each time by the number of symbols returned in the previous call, until the function returns 0.

Example
The following example gets a character result, using a small buffer:

#define CBCHBUF 1024 // Char buffer
#define CSYVMAX 32 // Relatively small symbol chunk

HRC vhrc; // Handle to a handwriting context
HRCRESULT vhrcresult; // Handle to a recognition result
SYV vrgsyv[CSYVMAX]; // Symbol result buffer
char vrgcBuff[CBCHBUF]; // Buffer for recognition results

.

. // Code that creates HRC, gets input, etc....

.
EndPenInputHRC(vhrc); // Tell recognizer no more ink
ProcessHRC(vhrc, PH_MAX); // Finish recognition

.

. // Retrieve a handle to the results

.
if (GetResultsHRC(vhrc, &vhrcresult, 1) > 0)
{

int i = 0, cSyv;

// Retrieve some symbols
while ((cSyv = GetSymbolsHRCRESULT(vhrcresult,

i, vrgsyv, CSYVMAX)) > 0)
{
if (i + cSyv + 1 > CBCHBUF) // Don't overflow buffer

cSyv = CBCHBUF - i - 1;
if (cSyv > 0) // Still have something?
{

SymbolToCharacter(vrgsyv, cSyv, vrgcBuff + i, NULL);
i += cSyv;

}
if (i + 1 >= CBCHBUF)

break;
}
vrgcBuff[i] = chNull; // Terminate string

}

DestroyHRCRESULT(vhrcresult); // We're finished with result
vhrcresult = NULL;
DestroyHRC(vhrc); // Finished with this HRC session
vhrc = NULL;

See Also

GetSymbolCountHRCRESULT, SYV_

GetVersionPenWin       

1.0 2.0

Retrieves the Pen API version number.

UINT GetVersionPenWin()

Return Value
The low-order byte of the return value specifies the major (version) number. The high-order byte specifies
the minor (revision) number.

GetWordlistCoercionHRC       

2.0

Retrieves the current word list coercion setting in a handwriting-recognition context HRC.

int GetWordlistCoercionHRC(HRC hrc)

Parameters
hrc

Handle to the HRC object.

Return Value
If successful, returns one of the following values:

Constant Description
SCH_ADVISE The word list is a hint to the recognizer, and

results are not strongly coerced to match the
word list.

SCH_FORCE If results do not match the word list, the
closest fit is returned.

SCH_NONE Do not coerce. This flag can be used to turn
off a previous request.

Otherwise, returns one of the following negative values:

Constant Description
HRCR_ERROR Invalid parameter or other error.
HRCR_MEMERR Insufficient memory.
HRCR_UNSUPPORTE
D

The recognizer does not support this
function.

See Also
SetWordlistCoercionHRC

GetWordlistHRC       

2.0

Retrieves a word list from a recognition context HRC.

int GetWordlistHRC(HRC hrc, LPHWL lphwl)

Parameters
hrc

Handle to the HRC object.
lphwl

Address of a handle to a word list. The recognizer sets the handle to NULL if the recognition context
does not contain a word list.

Return Value
Returns HRCR_OK if successful; otherwise, returns one of the following negative values:

Constant Description
HRCR_ERROR Invalid parameter or other error.
HRCR_MEMERR Insufficient memory.
HRCR_UNSUPPORTE
D

The recognizer does not support this
function.

Comments
An HRC can be configured for only one word list at a time. This is independent of the recognizer's
dictionary, which can be manipulated through the EnableSystemDictionaryHRC function.

For a description of word lists and how a recognizer uses them, see "Configuring the HRC" in Chapter 5,
"The Recognition Process."

See Also
SetWordlistHRC

HitTestPenData       

2.0

Determines if a given point lies on or near the pen-down strokes contained in an HPENDATA object.

int HitTestPenData(HPENDATA hpndt, LPPOINT lppt, UINT dThresh, UINT FAR* lpiStrk, UINT FAR*
lpiPnt)

Parameters
hpndt

Handle to the HPENDATA object. HitTestPenData does not alter the data in the HPENDATA object.
lppt

Address of a POINT structure containing the point to test.
dThresh

Threshold around the point given in lppt. The point lies at the center of a square with sides of length
dThresh. If HitTestPenData finds a point in the HPENDATA object that lies in the square, it indicates
a "hit." dThresh must have the same scaling units as the points in the HPENDATA or the result will
not be correct. If dThresh is 0, HitTestPenData assumes a default threshold value of 3.

lpiStrk

Stroke index from which to begin testing. After HitTestPenData returns from a successful test, the
variable that lpiStrk points to contains the index of the hit stroke.

lpiPnt

Point index from which to begin testing. After HitTestPenData returns from a successful test, the
variable that lpiPnt points to contains the index of the hit point in the stroke indicated by lpiStrk.

Return Value
Returns one of the following if successful:

Constant Description
PDR_HIT The point hits (intersects) the pen data or falls

within the provided threshold around a particular
point in the pen data as specified by the stroke and
the point indices. The stroke and point values are
returned in lpiStrk and lpiPnt, respectively.

PDR_NOHIT The point does not hit (intersect) the pen data nor
does it fall within the provided threshold around a
particular point in the pen data as specified by the
stroke and the point indices.

Otherwise, the function returns one of the following negative values:

Constant Description
PDR_COMPRESSED Pen data is compressed.
PDR_ERROR Parameter or other unspecified error.
PDR_MEMERR Memory error.
PDR_PNDTERR Invalid pen data.

PDR_PNTINDEXERR Invalid point index.
PDR_STRKINDEXERR Invalid stroke index.
PDR_VERSIONERR Could not convert old pen data.

Comments
HitTestPenData checks whether the point specified by lppt falls within the threshold specified by dThresh
around a point in the pen data, depending on the zero-based starting stroke and point indices specified by
lpiStrk and lpiPnt. This function tests only down strokes in the pen data. If lpiStrk is greater than the
number of strokes in the pen data, testing starts from the first stroke.

Similarly, if lpiPnt is greater than the number of points in the stroke, testing starts from the first point in
that stroke. The first point in the first stroke (from the specified indices) that meets the test condition is
returned via lpiPnt and lpiStrk, respectively.

In any case, HitTestPenData accounts for the width of the ink trail. If the value given in dThresh is less
than the ink width, HitTestPenData ignores the specified value of dThresh and instead uses the ink width
as the threshold.

HitTestPenData does not consider pen-up strokes.

InitRC       

1.0 2.0

Initializes an RC structure with default values.

Note This function is provided only for compatibility with version 1.0 of the Pen API, and will not be
supported in future versions.

void InitRC(HWND hwnd, LPRC lprc)

Parameters
hwnd

Handle to a window.
lprc

Address of the RC structure to initialize.

Return Value
This function does not return a value.

Comments
InitRC serves little purpose in applications that conform to version 2.0 of the Pen API. Under version 2.0,
a recognizer maintains an HRC object, which makes the RC structure obsolete.

For suggestions on how to update a version 1.0 application to remove services that rely on RC, see the
section "The RC Structure" in Appendix A.

InitRC initializes an RC structure with default values, many of which come from the global RC structure.
The application can use the initialized RC structure when calling the Recognize function. Although an
application can change any of these values, it should be careful about changing those items that can be
set by the user through the Windows Control Panel.

InitRC sets the bounding rectangle to the client area of the window identified by hwnd. The bounding
rectangle is valid only until the window is resized or moved. When this occurs, the application must again
call InitRC to update the rectBound member of the RC structure or correct rectBound manually. If the
window handle hwnd is NULL, the bounding rectangle and hwnd remain uninitialized. The application
must set the hwnd member to a valid window before calling Recognize or RecognizeData.

The following table describes the default values used to initialize the RC structure. Values not listed in the
table come from the global RC. Some of the global default values can be modified by the user in Control
Panel.

Value Description
 rc.alc ALC_DEFAULT. The function uses the

complete alphabet and all gestures. The
exact character set depends on the
recognizer.

rc.lRcOptions Zero.
rc.hwnd hwnd (the first argument of InitRC).

rc.wResultMode RRM_COMPLETE.
rc.rectBound (0,0,0,0) or client rectangle of hwnd if hwnd

is not NULL.
rc.lPcm PCM_ADDDEFAULTS, or

PCM_ADDDEFAULTS | PCM_RECTBOUND
if hwnd is not NULL.

rc.rectExclude (0,0,0,0).
rc.guide (0,0,0,0,0,0,0).
rc.wRcOrient RCOR_NORMAL.
rc.wRcDirect 0x0103

Members the user can change through the system Control Panel are filled with values indicating that the
system default should be used. These placeholder values are RC_WDEFAULT or RC_LDEFAULT,
depending on whether the member is a UINT or LONG value. During the processing of ProcessWriting,
Recognize, or RecognizeData, these values are replaced with the current system defaults before the RC
structure is passed to the recognizer. If the PCM_ADDDEFAULTS flag is set in lPcm, the values of the
lPcm member in the global RC are combined with the current lPcm values with OR operators at the time
the recognizer is called. If the high bit is set in wRcPreferences, the values of the wRcPreferences
member in the global RC are combined with the current wRcPreferences values with bitwise-OR
operators at the time the recognizer is called.

The following table gives the default values for the members of the RC structure:

Value Description
 rc.hrec RC_WDEFAULT
rc.lpfnYield RC_LDEFAULT
rc.lpUser RC_LDEFAULT
rc.wCountry RC_WDEFAULT
rc.wIntlPreferences RC_WDEFAULTFLAGS
rc.lpLanguage RC_LDEFAULT
rc.rglpdf RC_LDEFAULT
rc.wTryDictionary RC_WDEFAULT
rc.clErrorLevel RC_WDEFAULT
rc.wTimeOut RC_WDEFAULT
rc.wRcPreferences RC_WDEFAULTFLAGS
rc.nInkWidth RC_WDEFAULT
rc.rgbInk RC_LDEFAULT
rc.alcPriority ALC_NOPRIORITY
rc.rgbfAlc Array initialized to 0

The RC structure pointed to in the RCRESULT structure is a copy of the original RC structure passed as
a parameter to Recognize. In the copy, default values are replaced. All coordinates are in the tablet
coordinate system and the lRcOptions member has the RCO_TABLETCOORD flag set.

See Also
Recognize, RecognizeData, RC, ALC_, PCM_, RCO_

InsertPenData       

2.0

Merges two blocks of pen data at the specified stroke index.

int InsertPenData(HPENDATA hpndtDst, HPENDATA hpndtSrc, UINT iStrk)

Parameters
hpndtDst

Handle of the pen data object to merge into. When this function returns, this is the handle of the
merged data.

hpndtSrc

Handle of the pen data object to merge from.
iStrk

Stroke index. The merge operation occurs before this index. This parameter can also be IX_END to
append hpndtSrc to the end of hpndtDst.

Return Value
Returns PDR_OK if successful; otherwise, the return value is one of the following negative values:

Constant Description
PDR_COMPRESSED Pen data is compressed.
PDR_ERROR Parameter or other unspecified error.
PDR_MEMERR Out of memory.
PDR_OEMDATAERR Incompatible OEM data in the two pen data

objects.
PDR_STRKINDEXERR Invalid stroke index.
PDR_TIMESTAMPERR Incompatible time fields in the two pen data

objects.
PDR_USERDATAERR Incompatible user space in the two pen data

objects.
PDR_VERSIONERR Could not convert old pen data object.

Comments
InsertPenData merges two blocks of pen data starting at the zero-based stroke index specified by iStrk of
the destination pen data.

The blocks of pen data to be merged must be compatible. The calling application should ensure that the
blocks of data are in the same scaling mode. The user space, if present, should be of the same size.
OEM data, if present, must be compatible and of the same type. The application can use TrimPenData to
delete certain information from either the source or the destination HPENDATA object to make it
compatible. If hpndtDst has timing information and hpndtSrc does not, the merge fails. However, if
hpndtDst does not have timing information and hpndtSrc does have it, the timing is stripped from
hpndtSrc.

For a description of timing information, see "The HINKSET Object" in Chapter 4, "The Inking Process."

See Also
InsertPenDataStroke, InsertPenDataPoints, MetricScalePenData, TrimPenData, CreatePenDataEx

InsertPenDataPoints       

2.0

Inserts points into an existing HPENDATA object.

int InsertPenDataPoints(HPENDATA hpndt, UINT iStrk, UINT iPnt, UINT cPnts, LPPOINT lppt,
LPVOID lpvOem)

Parameters
hpndt

Handle to an HPENDATA object.
iStrk

Zero-based index of the stroke into which the points are inserted. If this value is IX_END, the points
are inserted in the last stroke.

iPnt

Zero-based index of the point in the stroke before which the points are inserted. If this value is
IX_END, the points are appended to the end of the stroke.

cPnts

Total number of points to be inserted. If this is 0, the function returns PDR_OK without taking any
other action.

lppt

Address of an array of POINT structures containing the points to be inserted.
lpvOem

Address of a buffer containing the OEM data to be inserted. This value can be NULL only if the
HPENDATA object does not have OEM data or a PENINFO structure.

Return Value
Returns PDR_OK if successful; otherwise, the return value can be one of the following negative values:

Constant Description
PDR_COMPRESSED Pen data is compressed.
PDR_ERROR Parameter or other unspecified error.
PDR_MEMERR Out of memory.
PDR_STRKINDEXERR Invalid stroke index.
PDR_PNTINDEXERR Invalid point index.
PDR_VERSIONERR Could not convert old pen data object.

Comments
InsertPenDataPoints inserts points into an existing stroke of the specified pen data object. It does not
create a new stroke. (Use the InsertPenDataStroke function to insert new strokes into the pen data
object.) The stroke attributes are not affected by the points added to the stroke.

The calling application must ensure that lppt and lpvOem are valid and that the points are in the same
scale as those of the pen data object. InsertPenDataPoints performs no automatic scaling of the points.

InsertPenDataPoints does not make any timing adjustments after adding points. This can affect
recognition accuracy and should be used judiciously.

For a description of timing information, see "The HINKSET Object" in Chapter 4, "The Inking Process."

See Also
AddPointsPenData, ExtractPenDataPoints, InsertPenData, InsertPenDataStroke,
RemovePenDataStrokes

InsertPenDataStroke       

2.0

Inserts a stroke into an existing HPENDATA object.

int InsertPenDataStroke(HPENDATA hpndt, UINT iStrk, LPPOINT lppt, LPVOID lpvOem,
LPSTROKEINFO lpsiNew)

Parameters
hpndt

Handle to the HPENDATA object that receives the inserted strokes.
iStrk

Zero-based index of the stroke at which the new stroke is to be inserted. If this value is IX_END, the
stroke is appended at the end of the HPENDATA memory block.

lppt

Pointer to a buffer containing the points to be inserted.
lpvOem

Pointer to a buffer of OEM data. This value can be NULL only if the pen data object does not have
OEM data or a PENINFO structure.

lpsiNew

Pointer to the STROKEINFO structure containing information about the stroke.

Return Value
Returns PDR_OK if successful; otherwise, the return value can be one of the following negative values:

Constant Description
PDR_COMPRESSED Pen data is compressed.
PDR_ERROR Parameter or other unspecified error.
PDR_MEMERR Out of memory.
PDR_STRKINDEXERR Invalid stroke index.
PDR_TIMESTAMPERR Timing error.
PDR_VERSIONERR Could not convert old pen data object.

Comments
InsertPenDataStroke inserts an entire stroke into an HPENDATA object. Use InsertPenDataPoints to
insert points into a particular stroke.

The inserted stroke assumes the default pen-tip attributes. SetStrokeAttributes should be called after
inserting the stroke to change such stroke attributes as the pen-tip characteristics or user data.

The calling application must ensure that lppt and lpvOem are valid, and that the points in the stroke that is
being added have compatible scaling modes.

Attempting to insert an empty stroke simply returns PDR_OK.

See Also

AddPointsPenData, ExtractPenDataPoints, InsertPenDataPoints, RemovePenDataStrokes,
STROKEINFO

InstallRecognizer       

1.0 2.0

Loads and initializes a specified recognizer.

HREC InstallRecognizer(LPSTR lpszRecogName)

Parameters
lpszRecogName

Name of recognizer to load. If lpszRecogName is NULL, the default recognizer is loaded. (An
application should not set lpszRecogName to NULL, because Windows automatically loads the
default recognizer on initialization.)

Return Value
Returns a handle to a recognizer if successful; otherwise, returns NULL.

Comments
The recognizer's name is the name of the DLL to be loaded. Windows searches for the recognizer file
according to the standard rules for searching for a DLL¾that is, it first searches the current directory, then
the Windows directory, the system subdirectory, the PATH directories, and so forth. The procedure fails if
the library cannot be found, the load fails, or the loaded DLL is not a valid recognizer. The recognizer may
decline to load if it requires hardware information such as pen pressure that the pen device cannot
provide.

An application should not load the default recognizer. All recognizers installed by an application must be
uninstalled by a call to UninstallRecognizer before the application terminates.

After loading a recognizer library, the system calls the recognizer's ConfigRecognizer function with the
subfunction WCR_INITRECOGNIZER.

An application can load a recognizer with a call to LoadLibrary instead of InstallRecognizer. However,
the application must first link with an import library derived from the recognizer DLL. The recognizer's
import library must appear in the library section of the LINK command line before PENWIN.LIB. This
forces the application's calls to pass directly to the recognizer's exported recognition functions instead of
the system.

This procedure may facilitate debugging the recognizer, but otherwise serves no purpose. It prevents use
of other recognizers, including the system default recognizer. For a discussion of import libraries, refer to
the section on the IMPLIB utility described in the Environment and Tools manual of the Microsoft VisualC+
+ documentation.

See Also
ConfigRecognizer, ConfigHREC, UninstallRecognizer

IsPenAware       

1.0 2.0

Checks the capability of an application to handle pen events by returning cached task pen flags.

Note This function is provided only for compatibility with version 1.0 of the Pen API and will not be
supported in future versions. Use GetPenAppFlags instead.

UINT IsPenAware()

Return Value
Returns the registration flags word set by a previous call to the SetPenAppFlags function. If
SetPenAppFlags has not been called, IsPenAware returns 0.

See Also
GetPenAppFlags, SetPenAppFlags

IsPenEvent       

1.0 2.0

Checks whether a mouse event was generated by the pen driver.

BOOL IsPenEvent(UINT message, LONG lExtraInfo)

Parameters
message

Windows mouse message being queried.
lExtraInfo

Value returned by GetMessageExtraInfo for the given message.

Return Value
Returns TRUE if the mouse event referenced by the message parameter was generated by the pen
driver; otherwise, returns FALSE.

Comments
Mouse drivers that have not been updated to be compatible with pens may produce an event that cannot
be distinguished from a real pen event. This has a very low probability of occurring.

KKConvert       

2.0

Activates the Kana-to-Kanji converter. (Japanese version only.)

BOOL KKConvert(HWND hwndConvert, HWND hwndCaller, LPSTR lpBuf, UINT cbBuf, LPPOINT
lpPoint)

Parameters
hwndConvert

Handle to the window with the text to be converted.
hwndCaller

Handle to the window that calls KKConvert.
lpBuf

The text to be converted.
cBuf

The number of bytes (greater than 1) in lpBuf.
lpPoint

The positition where the Kana-to-Kanji converter will appear.

Return Value
Returns TRUE if the text is successfully converted; otherwise, returns FALSE.

Comments
If lpBuf is NULL, the currently-selected text in the window specified by hwndConvert will be used for
conversion and then replaced with the converted text. If lpBuf is not NULL, the text in lpBuf will be
converted and replaced with the converted text. If the length of the converted text is longer than cbBuf,
the text will be truncated.

If the window referenced by hwndConvert is of the bedit class, lpPnt is ignored; otherwise, the center of
the Kana-to-Kanji conversion is displayed at lpPnt.

If the window referenced by hwndConvert is of the hedit class and lpPnt is NULL, then the current caret
position is used; otherwise, the client position (0,0) in the window referenced by hwndConvert is used.

MetricScalePenData       

1.0 2.0

Converts pen data points to one of the supported metric modes.

BOOL MetricScalePenData(HPENDATA hpndt, UINT wPndtNew)

Parameters
hpndt

Handle to a pen data object containing the points to be converted.
wPndtNew

Scaling metric to be used with the data, as listed here:
Constant Description
PDTS_LOMETRIC Each logical unit is mapped to 0.1

millimeter. Positive x is to the right; positive
y is down.

PDTS_HIMETRIC Each logical unit is mapped to 0.01
millimeter. Positive x is to the right; positive
y is down.

PDTS_HIENGLISH Each logical unit is mapped to 0.001 inch.
Positive x is to the right; positive y is down.
This is equivalent to
PDTS_STANDARDSCALE.

PDTS_DISPLAY This parameter scales the data, using
DPtoTP. The pen data memory block is left
in display coordinates.

Return Value
Returns TRUE if successful, or FALSE if hpndt is in a compressed state or if the data is not already in one
of the metric modes such as PDTS_ARBITRARY.

Comments
The MetricScalePenData function converts pen coordinates between metric and English standard
measurements. Metric units are 0.1 and 0.01 millimeter; English standard units are 0.001 inch. These
scaling metrics form the same mapping mode set in the Windows function SetMapMode.

MetricScalePenData allows an application to transform pen data to the mapping mode set for a device
context. This ensures that ink rendered in the device context appears in the proper scale.

Note the following caveats about MetricScalePenData:

· Because of rounding errors, scaling is not precisely reversible between mapping modes. Rounding
errors can also adversely affect recognition accuracy if the data is later given to a recognizer. The
problem arises when transforming the standard ink scale of HIENGLISH to a scale of lower
resolution, a transformation that loses some of the original data. The lost data cannot be recovered,
even if the coordinates are converted back into HIENGLISH.

· The scaling is not perfect and results in numerous "off-by-one" discrepancies, visible when displaying
the scaled data.

Strictly speaking, the PDTS_DISPLAY scaling type is not a metric scale. To use it, the current scale of the
data must be in PDTS_STANDARDSCALE units.

The effect of this call is similar to that of using the TPtoDP function on the array of points. A recognizer
may not accurately recognize the resulting data. As with the other scales, the PDTS_DISPLAY is set in
the wPndts member of the pen data header. If data is in PDTS_DISPLAY scale, MetricScalePenData
cannot be called to scale it back to the other metric scales. No overflow checks are made. Because of
rounding errors, scaling conversion is not perfectly reversible. Recognizers must recognize points that
have been scaled to PDTS_STANDARDSCALE (equivalent to PDTS_HIENGLISH).

See Also
OffsetPenData, ResizePenData, PDTS_

OffsetPenData       

1.0 2.0

Offsets the coordinates in an HPENDATA memory block to make them relative to another origin.

BOOL OffsetPenData(HPENDATA hpndt, int dx, int dy)

Parameters
hpndt

Handle to a pen data object.
dx

Offset of x-axis; that is, the amount to move left or right. To move left, the dx value must be negative.
dy

Offset of y-axis; that is, the amount to move up or down. To move up, the dy value must be negative.

Return Value
Returns TRUE if successful, or FALSE if hpndt is in a compressed state.

Comments
For every point in hpndt, dx is added to the x-coordinate and dy is added to the y-coordinate. No overflow
checks are made.

An application can use OffsetPenData to make points at display resolution relative to a particular window.
If the window is then moved, the application need only call OffsetPenData again to move the data by the
same amount, as shown in the example.

Example
The following sample code illustrates using the OffsetPenData function.

DWORDdwOrg; // Store window origin
.
.
.

// After creating window, note its current position
dwOrg = GetWindowOrg(hWnd);

.

.

.
switch(wMsg)
{

case WM_MOVE:
dx = (int) (LOWORD(lParam) - LOWORD(dwOrg)); // X increment
dy = (int) (HIWORD(lParam) - HIWORD(dwOrg)); // Y increment
dwOrg = (DWORD) lParam; //

Keep new org
OffsetPenData(hpendata, dx, dy);

See Also

MetricScalePenData, ResizePenData

PeekPenInput       

2.0

Retrieves information about a specified pen packet in the pen input queue. For a definition of pen packet,
see the description of SetPenHook.

int PeekPenInput(HPCM hpcm, UINT idEvent, LPPOINT lppt, LPVOID lpvOem, UINT fuOemFlags)

Parameters
hpcm

Handle to a pen collection. This is the return value from StartPenInput.
idEvent

The identifier of the packet to be retrieved. The idEvent is the low-order word of the value returned
from the Windows GetMessageExtraInfo function when processing a WM_LBUTTONDOWN
message.

lppt

Far pointer to a POINT structure. PeekPenInput copies the point corresponding to idEvent into the
buffer pointed to by lppt.

lpvOem

The address of a buffer of OEM data in the packet. This parameter can be NULL if no OEM data is
required.

fuOemFlags

Flags specifying which OEM data to retrieve. If this parameter is NULL, all of the OEM data provided
by the tablet is returned in the order specified by the rgoempeninfo array in PENINFO.
These flags have an implicit order. For example, if pressure and barrel rotation are specified in that
order, cPntMax pairs of these data are returned in the same order: [pressure, rotation], [pressure,
rotation], and so on. (cPntMax is the number of POINT structures specified in GetPenInput.)

Constant Description
PHW_PRESSURE Retrieve pressure data.
PHW_HEIGHT Retrieve height data.
PHW_ANGLEXY Retrieve data pertaining to the x- and y-

coordinates.
PHW_ANGLEZ Retrieve data pertaining to the z-

coordinates.
PHW_BARRELROTATIO
N

Retrieve barrel-rotation data.

PHW_OEMSPECIFIC Retrieve OEM-specific data.
PHW_PDK Retrieve PDK_ data.

Return Value
Returns PCMR_OK if successful; otherwise, the return value can be one of the following:

Constant Description
PCMR_INVALIDCOLLECTION The hpcm handle is invalid

because the calling application did
not start input with StartPenInput.

PCMR_INVALID_PACKETID idEvent is invalid.

Comments
Unlike GetPenInput, this function does not remove data from the pen input queue. It only returns
information about the packet specified by idEvent.

Whereas lppt points into the pen input queue, lpvOem does not. If lpvOem is not NULL, it points to a
buffer provided by the caller into which the OEM data are copied from the pen input queue.

The buffer that lpvOem points to must be large enough to hold the requested OEM data copied from the
packet. The size of each packet is the width specified in the cbOemData member of the PENINFO
structure, plus sizeof(UINT) if PDK_ values are required.

See Also
GetPenInput, PENPACKET, PDK_

PenDataFromBuffer       

2.0

Creates a HPENDATA object from serial data in a buffer. The buffer must have been previously written by
the PenDataToBuffer function.

LONG PenDataFromBuffer(LPHPENDATA lphpndt, UINT gmemFlags, LPBYTE lpBuffer, LONG cbBuf,
LPDWORD lpdwState)

Parameters
lphpndt

Pointer to an uninitialized HPENDATA handle. If PenDataFromBuffer returns successfully, lphpndt
points to a new HPENDATA object containing a copy of the serial points.

gmemFlags

Flag that specifies whether or not the Windows GlobalAlloc function should create a shared memory
object when the pen data object is created. This should be either 0 or GMEM_DDESHARE. The
GMEM_MOVEABLE and GMEM_ZEROINIT flags are added to this value and other GMEM_ flags
are ignored.

lpBuffer

Pointer to a byte buffer containing serial data.
cbBuf

Size of the buffer, which must be at least 64 bytes in size. If the buffer serves as an intermediate
holding area, it need not be as large as the final HPENDATA object. To create the object, the
application must call PenDataFromBuffer successively, each time reading a new section of data into
the buffer that lpBuffer points to before the call. The example below illustrates this technique by filling
an HPENDATA object in stages, reading data from a file in cbBuf increments.

lpdwState

Address of a DWORD variable used by the system to maintain the transfer state. The DWORD
variable must be initialized to 0 before the first call to PenDataFromBuffer. Between successive calls
to PenDataFromBuffer, the application must not alter the value that lpdwState points to. lpdwState
can be NULL to signify that the buffer contains the entire data set for the HPENDATA object. This
implies that subsequent calls to PenDataFromBuffer are not necessary.

Return Value
If successful, PenDataFromBuffer returns the number of bytes transferred from the buffer. If the size of
the pen data is larger than the buffer, the return value is equal to the buffer size passed in cbBuf. A value
of 0 indicates no more data to transfer. If there is an error, one of the following negative values is
returned:

Constant Description
PDR_ERROR Parameter or overflow error.
PDR_MEMERR Memory error.

Comments
The data being provided by the application must have been previously written by the PenDataToBuffer
function. The application cannot modify this data in any way. Embedded values within the first 64 bytes

provide information to PenDataFromBuffer about the size of the pen data.

PenDataFromBuffer creates an HPENDATA object and provides a handle to it. The application must
destroy the object when finished. The lphpndt argument points to a valid HPENDATA handle only if the
function returns PDR_OK.

While this function is reconstituting the HPENDATA object, the application must not attempt to use it in
any way because it will be invalid until the last buffer is read.

Example
The following example shows how to create a HPENDATA object from a file (hfile) that has already been
opened for reading. Before reading the pen data, its length is retrieved from the file:

#define cbBufMax 1024

HPENDATA NEAR PASCAL ReadPenData(HFILE hfile)
{

HPENDATA hpndt = NULL;
LONG cb, cbRead, cbHpndt;
BYTE lpbBuf[cbBufMax]; // Buffer
DWORD dwState = 0L; // Must initialize to 0

if (!hfile

|| (cb = _lread(hfile, &cbHpndt, sizeof(DWORD))) == HFILE_ERROR
|| cb != sizeof(LONG))

return NULL;

while (cbHpndt > 0)
{

if ((cbRead = _lread(hfile, lpbBuf, min(cbHpndt, cbBufMax)))
== HFILE_ERROR
|| PenDataFromBuffer(&hpndt, 0, lpbBuf,

 cbBufMax, &dwState) < 0)
{

if (hpndt)
DestroyPenData(hpndt);

return NULL;
}
cbHpndt -= cbRead;

}

return hpndt;
}

See Also

PenDataToBuffer, GetPenDataAttributes

PenDataToBuffer       

2.0

Writes the data in an existing HPENDATA object to a serial buffer.

LONG PenDataToBuffer(HPENDATA hpndt, LPBYTE lpBuffer, LONG cbBuf, LPDWORD lpdwState)

Parameters
hpndt

Handle to the HPENDATA object.
lpBuffer

Pointer to an empty buffer.
cbBuf

Size of the buffer in bytes. The buffer must be at least 64 bytes in size. If the buffer serves as an
intermediate holding area, it need not be as large as the HPENDATA object. To read all data from the
object in this case, the application must call PenDataToBuffer successively, each time copying the
data from the buffer that lpBuffer points to before the next call. The example below illustrates this
technique by writing an HPENDATA object in cbBuf increments to a file.

lpdwState

Address of a DWORD variable used by the system to maintain the transfer state. The DWORD
variable must be initialized to 0 before the first call to PenDataToBuffer. Between successive calls to
PenDataToBuffer, the application must not alter the value that lpdwState points to. lpdwState can be
NULL to signify that the buffer is large enough to contain the entire HPENDATA object. This implies
that subsequent calls to PenDataToBuffer are not necessary.

Return Value
If successful, PenDataToBuffer returns the number of bytes transferred into the buffer. If the size of the
pen data is larger than the buffer, the return value is equal to the buffer size passed in cbBuf until the final
transfer, when it is typically some smaller value. A value of 0 indicates no more data to transfer. If there is
an error, one of the following negative values is returned:

Constant Description
PDR_ERROR Parameter or other unspecified error.
PDR_MEMERR Memory error.
PDR_PNDTERR Invalid HPENDATA object.
PDR_VERSIONERR Could not convert old HPENDATA object.

Comments
The buffer need not be large enough to accommodate the entire HPENDATA object. To allocate a buffer
large enough for a single transfer, the application can determine the required size with the
GetPenDataAttributes subfunction GPA_SIZE .

Example
The following example shows how to save an HPENDATA object to a file (hfile) that has already been
opened for writing. The length of the pen data is saved in the file before writing the pen data itself:

#define cbBufMax 1024

BOOL NEAR PASCAL WritePenData(HFILE hfile, HPENDATA hpndt)
{

BYTE lpbBuf[cbBufMax];
DWORD dwState = 0L; // Must initialize to zero
LONG cb;
LONG cbSize;

if (!hfile || !hpndt)

return FALSE;

// Get size and save to file
if (GetPenDataAttributes(hpndt, (LPVOID)&cbSize, GPA_SIZE) < 0)

return FALSE;

// write size of pen data to file so that it can be used while reading
it back

if (_lwrite(hfile, &cbSize, sizeof(LONG)) == HFILE_ERROR)
return FALSE;

// Write the pen data in chunks, and repeat until done
while ((cb = PenDataToBuffer(hpndt, lpbBuf,

 cbBufMax, &dwState)) > 0L)
{

if (_lwrite(hfile, lpbBuf, (UINT)cb) == HFILE_ERROR)
return FALSE;

}

return (cb >= 0L); // Return TRUE if cb >= 0
}

See Also

PenDataFromBuffer

PostVirtualKeyEvent       

1.0 2.0

Posts a virtual key-code event to Windows.

void PostVirtualKeyEvent(UINT vk, BOOL fUp)

Parameters
vk

Virtual key. This argument takes a Windows VK_ constant as defined in the WINDOWS.H include file.
Depending on the key, this is either the key scan code or the ASCII equivalent to represent a
character key. For example, VK_A has the value "A."

fUp

Key-transition flag. This parameter should be FALSE to specify that the key is down or TRUE to
specify that it is up.

Return Value
This function does not return a value.

Comments
PostVirtualKeyEvent does not check the virtual key code for errors.

Normally, an application should follow a key-down message with a corresponding key-up message to
accurately simulate the actual events from the keyboard. You can post repeating keys by calling
PostVirtualKeyEvent consecutively, one call per repeat, with fUp set to FALSE. End the sequence with a
single call to PostVirtualKeyEvent with fUp set to TRUE.

The events are posted to the system message queue. The application with the input focus can receive the
messages by calling the Windows GetMessage or PeekMessage function.

See Also
AtomicVirtualEvent, PostVirtualMouseEvent

PostVirtualMouseEvent       

1.0 2.0

Posts a virtual mouse code to Windows.

void PostVirtualMouseEvent(UINT wMouseFlags, int xPos, int yPos)

Parameters
wMouseFlags

Flags indicating the type of mouse event. This can be one or more of the following values, combined
by a bitwise-OR operator.

Constant Description
VWM_MOUSEMOVE Simulates a change in the mouse

cursor position. This flag can be
combined with any of the other flags
in this table.

VWM_MOUSELEFTDOWN Simulates pushing the left mouse
button.

VWM_MOUSELEFTUP Simulates releasing the left mouse
button.

VWM_MOUSERIGHTDOW
N

Simulates pushing the right mouse
button.

VWM_MOUSERIGHTUP Simulates releasing the right mouse
button.

xPos

The x-axis position in screen coordinates.
yPos

The y-axis position in screen coordinates.

Return Value
This function does not return a value.

Comments
The x- and y-axis positions are absolute positions in screen coordinates. Note that the x and y values
should not exceed the screen-resolution limits. Values greater than the maximum resolution in the x-
direction (640 for standard VGA) or the y-direction (480 for standard VGA) cause an overflow.

The events are posted to the system message queue. The application with the input focus can receive the
messages by calling the Windows GetMessage or PeekMessage message.

Because of the way Windows interprets mouse messages, the calling application must be careful about
the order in which events are sent to the system. A message that represents both a button-state transition
and a move generates first a Windows event for the button transition at the current pointer location and
then a move to the new location. To simulate a move to a new location followed by a button transition, the
application must make separate calls to PostVirtualMouseEvent for each simulated event.

Example

When posting events, the caller should bracket the calls by calls to AtomicVirtualEvent, which locks out
pen packets while the application is posting simulated mouse events. For example, the following code
fragment posts a mouse event:

AtomicVirtualEvent(TRUE);
//
// ... PostVirtualMouseEvent calls go here
//
AtomicVirtualEvent(FALSE);

The Windows GetMessageExtraInfo function returns 0 for any messages generated by
PostVirtualMouseEvent.

See Also
AtomicVirtualEvent, PostVirtualKeyEvent

ProcessHRC       

2.0

Gives a recognizer sufficient time for intermediate processing of pen input. A recognizer must export this
function.

int ProcessHRC(HRC hrc, DWORD dwTimeMax)

Parameters
hrc

Handle to the HRC object for the recognizer.
dwTimeMax

The maximum time in milliseconds that the recognizer should process before returning from this call.
This parameter can also be one of the following time-out codes:

Constant Description
PH_MIN The recognizer should take only a very small

amount of time to process the input, typically
50 milliseconds.

PH_DEFAULT The recognizer should take a moderate amount
of time to process the input, typically 200
milliseconds.

PH_MAX The recognizer should take as much time as
required to complete recognition.

Return Value
If there are no errors, returns one of the following values:

Constant Description
HRCR_OK Processing is successful.
HRCR_INCOMPLETE The recognizer is still processing the current

batch of input.
HRCR_GESTURE The recognizer has recognized a possible

gesture.
This can be returned before the recognition
process
is complete. If the processing completes,
HRCR_COMPLETE is always returned,
even for gestures.

HRCR_COMPLETE The recognizer completed processing and
does not expect any more input.

To indicate an error, ProcessHRC returns one of the following negative values:

Constant Description
HRCR_ERROR Invalid parameter or other error.
HRCR_MEMERR Insufficient memory.

Comments
ProcessHRC returns if the time specified by dwTimeMax elapses before recognition is complete.

In an operating environment that does not use threads, this function allows an application to provide some
time for the recognizer to process input. By checking the return value, the application is able to monitor
the progress, specifically whether a gesture is a recognition candidate. If the function returns
HRCR_GESTURE, the application can call GetResultsHRC to determine whether the gesture should be
acted on immediately.

Typically, the return value is HRCR_OK if the current batch of ink input has been processed by the
recognizer, and HRCR_INCOMPLETE if the recognizer has not yet finished processing.

If ProcessHRC is called with PH_MAX, recognition is complete only if EndPenInputHRC has been called
to notify the recognizer that no more results are expected. The return value in this case is
HRCR_COMPLETE, and the application is free to get and display final results. If the application supplies
further input at this point, it has the effect of canceling the EndPenInputHRC call, although this procedure
is not recommended for reasons of efficiency.

However, PH_MAX may result in poorer performance, since further processing in the system is blocked
until ProcessHRC returns. Instead, the application can call ProcessHRC in an idle loop or a separate
thread, calling it repeatedly with smaller time allotments until the function returns HRCR_COMPLETE.
Note that if a separate thread is used to finish processing, the main thread can call this function with
PH_MIN from time to time to determine if processing has finished (that is, checking for the
HRCR_COMPLETE return value).

The first time that ProcessHRC is called for a particular recognition context, functions that set its state
cannot be used for the remainder of that context's existence. The following functions return an error if they
are called before ProcessHRC returns HRCR_COMPLETE:

· EnableGestureSetHRC
· EnableSystemDictionaryHRC
· SetAlphabetHRC
· SetAlphabetPriorityHRC
· SetBoxAlphabetHRC
· SetWordlistCoercionHRC
· SetGuideHRC
· SetInternationalHRC
· SetMaxResultsHRC
· SetWordlistHRC

See Also
EndPenInputHRC, GetResultsHRC

ProcessWriting       

1.0 2.0

Processes handwriting.

Note This function is provided only for compatibility with version 1.0 of the Pen API and will not be
supported in future versions. Use DoDefaultPenInput instead.

REC ProcessWriting(HWND hwnd, LPRC lprc)

Parameters
hwnd

Window to receive messages. This parameter must not be NULL.
lprc

Address of RC structure to use for recognition. This parameter can be NULL.

Return Value
Returns values less than 0 if the application should treat the event as a mouse event instead of a pen
event. Return values less than 0 occur if the event did not come from a pen, the user performed a press-
and-hold action (REC_POINTEREVENT), or an error occurred¾for example, running out of memory.

Comments
The ProcessWriting function is similar to Recognize except that ProcessWriting also takes care of
inking, removing the ink, and converting the results message to standard Windows messages.

Depending on the existing code in an application, ProcessWriting may not be suitable for making an
application pen-aware. This function can also limit the power of a pen interface.

If lprc is NULL, a default RC structure is created for the application. The default RC structure contains all
system defaults and the inking is constrained to the client area of hwnd. If lprc points to a valid RC
structure, the rectBound member of the RC structure is used to constrain the inking. Regardless of
whether the application provides an RC or not, ProcessWriting assumes a value of RRM_COMPLETE
for the wResultMode member. See RC for a description of wResultMode and the RRM_ values.

After the writing is completed, the ink is removed before any messages are sent to hwnd. After the ink is
removed, the screen is updated and hwnd receives a WM_RCRESULT message. If the application
processes this message, it should return TRUE. In this case, no further messages are sent.

If the application returns FALSE, ProcessWriting performs the default conversion of the results message
to standard Windows messages, as shown in the following table. The messages are sent rather than
posted. Note that the DefWindowProc function returns 0 when processing the WM_RCRESULT
message.

Results message Windows message
SYV_BACKSPACE WM_LBUTTONDOWN, followed by

WM_LBUTTONUP at the hot spot of the
gesture, followed by WM_CHAR specifying a
backspace.

SYV_CLEAR WM_CLEAR.

SYV_CLEARWORD WM_LBUTTONDOWN, WM_LBUTTONUP,
WM_LBUTTONDBLCLK, WM_LBUTTONUP
at the same point, followed by WM_CLEAR.

SYV_COPY WM_COPY.
Results message Windows message
SYV_CORRECT WM_LBUTTONDOWN, WM_LBUTTONUP,

WM_LBUTTONDBLCLK, WM_LBUTTONUP
at the hot spot of the gesture, followed by
WM_COPY. At this point the Edit Text dialog
box is activated; it retrieves text from the
Clipboard. This uses the existing selection, if
any. The previous contents of the Clipboard
are lost.

SYV_CUT WM_CUT.
SYV_EXTENDSELECT WM_LBUTTONDOWN, followed by

WM_LBUTTONUP at the hot spot of the
gesture.
The MK_SHIFT flag is set for the wParam of
these messages.

SYV_LASSO WM_LBUTTONDOWN at upper-left corner
of selected area, followed by
WM_MOUSEMOVE message, followed by
WM_LBUTTONUP at the lower-right corner
of selected area.

SYV_PASTE WM_LBUTTONDOWN, followed by
WM_LBUTTONUP at the hot spot of the
gesture, followed by WM_PASTE.

SYV_RETURN WM_LBUTTONDOWN, followed by
WM_LBUTTONUP at the hot spot of the
gesture, followed by WM_CHAR specifying a
carriage return.

SYV_SPACE WM_LBUTTONDOWN, followed by
WM_LBUTTONUP at the hot spot of the
gesture, followed by WM_CHAR specifying a
space.

SYV_TAB WM_LBUTTONDOWN, followed by
WM_LBUTTONUP at the hot spot of the
gesture, followed by WM_CHAR specifying a
tab.

SYV_UNDO WM_UNDO.
text One WM_CHAR message per character of

text.

The SYV_ symbol values in the previous table identify gestures. To see a complete list of symbol values,
refer to Chapter 13, "Pen Application Programming Interface Constants."

The lParam of a WM_RCRESULT message generated by ProcessWriting is a far pointer to an
RCRESULT structure. By default, when an application receives a WM_RCRESULT message, the
hpendata member of the RCRESULT structure is NULL. If you need the HPENDATA handle, set the
RCO_SAVEHPENDATA flag in the lRcOptions member of the RC structure. In this case, the calling
application is responsible for destroying the HPENDATA object.

See Also
DoDefaultPenInput, InitRC, Recognize, REC_, SYV_, RCO_

ReadHWL       

2.0

Reads a word list from a file.

int ReadHWL(HWL hwl, HFILE hfile)

Parameters
hwl

A handle to an empty word list.
hfile

A handle to a file previously opened for reading.

Return Value
Returns HRCR_OK if successful; otherwise, returns one of the following negative values:

Constant Description
HRCR_ERROR Invalid parameter or file or other error.
HRCR_MEMERR Insufficient memory.

Comments
The words are expected as ANSI text, one word per line, followed by a carriage return and linefeed. In
this context, a word can represent a phrase and contain spaces or other noncharacters, such as "New
York" and "ne'er-do-well." Empty lines or lines containing only spaces or tabs are allowed but ignored.

The file that hfile refers to must already exist and be open for reading.

The hwl parameter must be the handle of an empty word list created by CreateHWL. If the word list is not
empty, ReadHWL returns HRCR_ERROR.

Once the file is read, it can be closed immediately.

Example
The following example demonstrates how to provide a word list to constrain recognition results to the
words contained in the fictitious file COUNTRY.LST:

HWL hwlCountries = CreateHWL(NULL, NULL, WLT_EMPTY, 0L);
OFSTRUCT ofStruct;
HFILE hfile = OpenFile("country.lst", &ofStruct, OF_READ);

if (hfile != HFILE_ERROR)
{
ReadHWL(hwlCountries, hfile);
_lclose(hfile);
}
else
ErrorMsg(FILEOPEN);
.
.
.

if (hrc = CreateCompatibleHRC(NULL, NULL))
{
SetWordlistHRC(hrc, hwlCountries); // Set list into HRC
SetWordlistCoercionHRC(hrc, SCH_FORCE); // Force match
.
. // Code that collects and recognizes input here
.
}

See Also

CreateHWL, WriteHWL

Recognize       

1.0 2.0

Begins sampling pen data and converts tablet input to recognized symbols.

Note This function is provided only for compatibility with version 1.0 of the Pen API and will not be
supported in future versions.

REC Recognize(LPRC lprc)

Parameters
lprc

Address of an RC structure.

Return Value
Returns an REC_ value. See the "Comments" section for a description of the return values.7

Comments
The RC structure that lprc points to contains the parameters that control recognition. The system sends
recognition results via the WM_RCRESULT message to the window indicated by the hwnd member of
the RC. All results messages are sent before Recognize returns. Multiple result messages can be sent if
the application asks for results to be sent to the application before all input has been completed (as
indicated by the wResultMode member of the RC structure).

An application that uses version 1.0 recognizers should call Recognize when the input session begins,
signaled by the WM_LBUTTONDOWN message.

The value REC_OK is used in the wParam of the WM_RCRESULT message to indicate that more data is
coming. Return values of greater than 0 signal normal successful completion. Return values of less than 0
indicate abnormal termination. Return values of less than REC_DEBUG are reserved for return values
from

debugging versions of the system or recognizer. If an application creates a condition that would be caught
in a debugging version while running a nondebugging version, the results are undefined.

Each return value can be the wParam value of the WM_RCRESULT message or the return value for
Recognize. The wParam value of the last WM_RCRESULT message generated by a call to Recognize
is the return value of Recognize. Some error conditions, such as REC_OOM or REC_NOTABLET, are
returned without generating any corresponding WM_RCRESULT message.

All of the values listed in the following table are in the debug version only. No WM_RCRESULT message
is generated if these values are returned by Recognize.

Constant Description
REC_ALC Invalid enabled alphabet.
REC_BADEVENTREF Returned when the wEventRef member in

the lprc structure is invalid.
REC_CLVERIFY Invalid verification level.
REC_DEBUG All debugging return values are less than

this.
REC_DICT Invalid dictionary parameters.
REC_ERRORLEVEL Invalid error level.
REC_GUIDE Invalid GUIDE structure.
REC_HREC Invalid recognition handle.
REC_HWND Invalid handle to window to send results to.
REC_INVALIDREF Invalid data reference parameter.
REC_LANGUAGE Returned by the recognizer when the

lpLanguage member contains a language
that is not supported
by the recognizer. Call ConfigRecognizer
with the WCR_QUERYLANGUAGE
subfunction to determine whether a
particular language is supported.

REC_NOCOLLECTION In version 1.0, was returned by
GetPenHwData if collection mode has not
been set. Not used now.

REC_OEM Error codes less than or equal to REC_OEM
are specific to the recognizer.

REC_PCM Invalid lPcm member in the RC structure.
There is no way for the recognition to end.

REC_RECTBOUND Invalid rectangle.
REC_RECTEXCLUDE Invalid rectangle.
REC_RESULTSMODE Unsupported results mode requested.

See Also
InitRC, RecognizeData, GetPenHwEventData, RC, REC_

RecognizeData       

1.0 2.0

Converts the data in an HPENDATA object to recognized symbols.

Note This function is provided only for compatibility with version 1.0 of the Pen API and will not be
supported in future versions.

REC RecognizeData(LPRC lprc, HPENDATA hpndt)

Parameters
lprc

Address of an RC structure.
hpndt

Handle to an HPENDATA object.

Return Value
Returns REC_DONE if successful, or an REC_ error code if an error occurs.

Comments
RecognizeData recognizes data in an HPENDATA object and returns the results to the window specified
in the RC structure. RecognizeData is similar to Recognize. The difference is that in RecognizeData,
the input data comes from a buffer of points already collected instead of from the tablet driver. Members
pertaining to the end of recognition in the RC structure are ignored.

RecognizeData can return REC_BUSY if the recognizer is not reentrant. A recognizer is not guaranteed
to return the same results for identical input. This is because persistent states, such as the current
average size of writing or the position of the baseline, can affect recognition results. In addition, training
may change the prototypes against which the data is being compared.

RecognizeData attempts to convert the pen data to PDTS_STANDARDSCALE if it is not already in
standard scale. If the conversion fails (for example, because the data was in an application-specific scale
PDTS_ARBITRARY), the data is still passed to the recognizer. A recognizer may return an error code
(REC_BADHPENDATA) for data in a scale it cannot handle.

See Also
InitRC, Recognize, GetPenHwEventData, RC, REC_, PDTS_

RedisplayPenData       

1.0 2.0

Redraws the pen data in the same manner as originally inked.

BOOL RedisplayPenData(HDC hdc, HPENDATA hpndt, LPPOINT lpDelta, LPPOINT lpExt, int
nInkWidth, DWORD rgbColor)

Parameters
hdc

Handle to a device context. The mapping mode should be MM_TEXT.
hpndt

Handle to a pen data object. The pen data must be scaled to PDTS_DISPLAY or
PDTS_STANDARDSCALE.

lpDelta

An offset, in logical units, that is subtracted from the pen data points to position the ink. If lpDelta is
NULL, there is no offset.

lpExt

Extent, in logical units, for scaling. If lpExt is NULL, no scaling is performed.
nInkWidth

Width of the ink to be drawn, in pixels (1 to 15). If nInkWidth is -1, the strokes are rendered using the
original ink width stored in the stroke header. An ink width of 0 causes the function to simply return
TRUE.

rgbColor

RGB value of the color to draw the ink. If rgbColor is 0xFFFFFFFF, the strokes are rendered using the
original ink color stored in the stroke header.

Return Value
Returns TRUE if successful; otherwise FALSE.

Comments
The nInkWidth and rgbColor values override the pen currently selected for the hdc device context.

If the mapping mode of the hdc device context is not MM_TEXT, two problems can occur:

· RedisplayPenData uses TPtoDP to prepare the pen data points for rendering. After this, the points
are in MM_TEXT coordinates; this assumes an MM_TEXT device context for display. If the device
context is in a different mapping mode, the ink coordinates will not be correct. Even if you use the ink-
scaling functions to bypass this problem, you will still encounter rounding-error problems between the
two scalings.

· No matter what scaling is done, rounding errors occur when converting between modes. These errors
cause the ink to shift slightly when repainted.

For any rendering into a device context that represents anything other than a display device context,
DrawPenDataEx should be used. This is because RedisplayPenData makes assumptions that are not
optimal for other devices such as printers or metafiles.

RedisplayPenData provides the ability to re-create original inking perfectly. To do this, an application can
use either of two methods:

· After the input session ends and data is collected into an HPENDATA object, store the current origin
of the window containing the ink. When calling RedisplayPenData to redraw the ink, supply the origin
value in the lpDelta argument, set lpExt to NULL, and set the mapping mode of the device context to
MM_TEXT. Only ink data with a common window origin can be merged into a single HPENDATA.

· In the second method, the application must call two Pen functions immediately after collecting the
data into an HPENDATA object. The first call to MetricScalePenData converts the pen data to
display coordinates. The second call to OffsetPenData sets the display coordinates relative to the
window containing the original ink. To display, the application must call RedisplayPenData with
lpDelta and lpExt set to NULL and the mapping mode of the device context set to MM_TEXT. If the
application adopts this method for multiple HPENDATA objects, it can later merge them to form a
single HPENDATA object (up to the 64K limit).

The second method has the advantages of simplicity and data compression. See the description of
MetricScalePenData for a discussion of the limitations of converting data to display resolution.

Since the pen data has the origin of (0,0) based on the upper-left corner of the display, applications must
move from a screen-relative position to a position relative to the device context. To do this, subtract the
origin of the device context (in screen coordinates) from the object currently residing in screen-coordinate
space.

The lpDelta parameter enables the application to render ink relative to the window instead of relative to
the screen. An application should call the ClientToScreen function for (0,0) to find the proper screen
coordinates to be placed in the *lpDelta POINT structure. Once this is done, the pen data is rendered at
the appropriate location in window coordinates. If lpDelta is NULL, no offset for the data is assumed.

The lpExt argument specifies the extents into which the data should be scaled. If extents are provided,
data is scaled into a rectangle described by lpDelta and lpExt. The values of x and y in lpExt and lpDelta
are in the mapping mode of the device context into which the data is rendered.

RedisplayPenData displays pen data with a square graphical device interface (GDI) pen brush for
maximum drawing speed. When displaying wide lines of ink, this optimization can cause the ends of
abutting lines to appear blocky. If you prefer a smoother look to the joints of wide lines at the expense of
rendering speed, draw the ink with DrawPenData, DrawPenDataEx, or DrawPenDataFmt instead of
RedisplayPenData. These functions draw wide lines by flood-filling a region, thus smoothing the ends.

See Also
DrawPenData, DrawPenDataEx, PDTS_

RegisterPenApp       

1.0 2.0

Notifies the pen system that the application edit controls should be replaced with hedit controls. This
function is required only for applications that specify EDIT class (instead of HEDIT class) for control
windows with versions of Windows earlier than Windows 95.

Note that this function has been superseded by the SetPenAppFlags function in the 2.0 version of the
Pen API, although calling RegisterPenApp is still supported. See SetPenAppFlags for more information.

void RegisterPenApp(UINT fuFlags, UINT uVersion)

RemovePenDataStrokes       

2.0

Removes strokes from an HPENDATA object.

int RemovePenDataStrokes(HPENDATA hpndt, UINT iStrk, UINT cStrks)

Parameters
hpndt

Handle to the HPENDATA object.
iStrk

Zero-based index of the first stroke to remove. This value can be IX_END to remove the last stroke.
The function fails if iStrk is greater than the number of strokes in the pen data object.

cStrks

Count of strokes to remove. If this value is greater than the number of strokes after the specified
stroke index, the stroke indexed by iStrk and all following strokes are removed. cStrks can be IX_END
to remove all strokes from iStrk onward.

Return Value
Returns PDR_OK if successful; otherwise, the return value can be one of the following negative values:

Constant Description
PDR_COMPRESSED Pen data is compressed.
PDR_ERROR Parameter or other unspecified error.
PDR_MEMERR Out of memory.
PDR_PNDTERR Invalid pen data object.
PDR_STRKINDEXERR Invalid stroke index.
PDR_VERSIONERR Could not convert old pen data object.

Comments
RemovePenDataStrokes removes the number of strokes specified by cStrks, starting at the stroke
specified by iStrk. Use ExtractPenDataPoints to remove points from a particular stroke of the pen data
object.

See Also
ExtractPenDataPoints, InsertPenDataPoints, InsertPenDataStroke

ResizePenData       

1.0 2.0

Scales ink in an HPENDATA object into an arbitrarily sized rectangle.

BOOL ResizePenData(HPENDATA hpndt, LPRECT lprect)

Parameters
hpndt

Handle to a pen data object.
lprect

Address of a bounding rectangle, or NULL.

Return Value
Returns TRUE if successful; otherwise, the return value is FALSE.

Comments
This function changes the physical size of the object without changing the meaning of the measurements.
Use the MetricScalePenData function to convert the data to one of the supported metric modes of
measurement.

ResizePenData physically resizes the data in hpndt to the bounding rectangle dimensions given by the
lprect parameter. Data from hpndt is mapped to the new rectangle. If lprect is NULL, this function
recalculates the bounding rectangle (the rectBound member in the PENDATAHEADER structure). For
example, consider the case of pen data with PDTS_HIMETRIC scaling bounded by the square (500, 600,
1500, 1600). To double the size, set lprect to (500, 600, 2500, 2600).

See Also
OffsetPenData, MetricScalePenData, PDTS_

ResultsHookHREC
2.0

The ResultsHookHREC function is an application-defined callback function that provides the application
with the opportunity to view all recognition results before they are returned to the application. The name
ResultsHookHREC is a placeholder; the function can have any name.

BOOL CALLBACK ResultsHookHREC(HREC hrec, HRC hrc, WORD wHooktype, UINT cResults,
UINT cAlt, LPVOID rgresults)

Parameters
hrec

Module handle of the recognizer library whose results are being hooked.
hrc

Handle to the HRC object for the recognizer that hrec refers to.
wHooktype

Type of hook. This can be one of the following values:
RHH_STD

Standard results generated by GetResultsHRC.
RHH_BOX

Boxed results generated by GetBoxResultsHRC.
cResults

Count of results available.
cAlt

Count of box alternatives. This is valid only if wHooktype is RHH_BOX.
rgresults

An array of result objects. The object type depends on wHooktype. If RHH_STD, rgresults should be
cast as LPHRCRESULT and the array receives cResults HRCRESULT objects. If RHH_BOX,
rgresults should be cast as LPBOXRESULTS and the array receives cResults BOXRESULTS
structures.

Return Value
The application hook function should return TRUE to indicate that it has processed the data and that the
recognizer should do no further processing. In this case, it is the application's responsibility to destroy the
results and inksets, if any; otherwise, the hook function should return FALSE.

See Also
SetResultsHookHREC

SetAlphabetHRC       

2.0

Specifies which alphabet should be used in an HRC object.

int SetAlphabetHRC(HRC hrc, ALC alc, LPBYTE rgbfAlc)

Parameters
hrc

Handle to the HRC object.
alc

Alphabet. This value is one or more ALC_ values combined using the bitwise-OR operator.
rgbfAlc

Array of bits if alc contains ALC_USEBITMAP; otherwise, it can be NULL.

Return Value
Returns HRCR_OK if successful; otherwise, returns one of the following negative values:

Constant Description
HRCR_ERROR Invalid parameter or other error.
HRCR_MEMERR Insufficient memory.
HRCR_UNSUPPORTE
D

The recognizer does not support this
function.

Comments
Some recognizers may not support ALC_ values and alphabet priorities. An application should check for
HRCR_UNSUPPORTED when using this function.

The following values may require Japanese, wide-character, or recognizer-specific support: ALC_DBCS,
ALC_JIS1, ALC_KANJI, ALC_OEM, ALC_HIRAGANA, and ALC_KATAKANA. In addition,
ALC_RESERVED is reserved for future use and is ignored. Recognizers, such as the Microsoft
Handwriting Recognizer (GRECO.DLL) for default American English, can return HRCR_OK even if some
of these values are set.

The size of the rgbfAlc array, if used, must be large enough to accommodate 256 bits (32 bytes). If the nth
bit is set, then the nth ANSI character is recognizable. Bits representing characters less than 32 (space)
currently have no meaning.

The ALC_GESTURE value is ignored, even if it is part of the alc parameter. See EnableGestureSetHRC.

For a description of alphabets and their relationship to a recognizer, see "Configuring the HRC" in
Chapter 5, "The Recognition Process." For a list of alphabet codes, see Chapter 13, "Pen API Constants."

See Also
EnableGestureSetHRC, GetAlphabetHRC

SetAlphabetPriorityHRC, ALC_

SetAlphabetPriorityHRC       

2.0

Specifies the priority of alphabet sets in an HRC object.

int SetAlphabetPriorityHRC(HRC hrc, ALC alc, LPBYTE rgbfalc)

Parameters
hrc

Handle to the HRC object.
alc

Alphabet priority. This value is one or more ALC_ values combined using the bitwise-OR operator.
rgbfalc

Address of a 256-bit (32-byte) buffer whose bits map to ANSI single-byte characters if alc contains
ALC_USEBITMAP; otherwise, it can be NULL.

Return Value
Returns HRCR_OK if successful; otherwise, returns one of the following negative values:

Constant Description
HRCR_ERROR Invalid parameter or other error.
HRCR_MEMERR Insufficient memory.
HRCR_UNSUPPORTE
D

The recognizer does not support this
function.

Comments
Some recognizers may not support ALC_ values and priorities. An application should check for
HRCR_UNSUPPORTED when using this function.

For a description of how a recognizer uses alphabet priority, see "Configuring the HRC" in Chapter 5,
"The Recognition Process." For a list of alphabet codes, see Chapter 13, "Pen Application Programming
Interface Constants."

See Also
GetAlphabetHRC, SetAlphabetHRC, GetAlphabetPriorityHRC, ALC_

SetBoxAlphabetHRC       

2.0

Specifies the alphabet codes to use for a range of boxes.

int SetBoxAlphabetHRC(HRC hrc, LPALC rgalc, UINT cAlc)

Parameters
hrc

Handle to an HRC object.
rgalc

An array of cAlc ALC_ values. The array is mapped onto boxes starting at box zero.
cAlc

Number of ALC_ values in rgalc. This should match the number of boxes. If this parameter is 0,
SetBoxAlphabetHRC simply returns 0.

Return Value
Returns HRCR_OK if successful; otherwise, returns one of the following negative values:

Constant Description
HRCR_ERROR Invalid parameter or other error.
HRCR_MEMERR Insufficient memory.
HRCR_UNSUPPORTE
D

The recognizer does not support this
function.

Comments
SetBoxAlphabetHRC applies only when an HRC has been configured for box guides with the
SetGuideHRC function. Although SetAlphabetHRC can also specify an alphabet set for boxed input, it
attaches the same alphabet setting to all boxes indiscriminately. SetBoxAlphabetHRC offers greater
control by allowing an application to set different alphabets for individual boxes of a single HRC.

Example
For example, consider a boxed entry on a requisition form that expects a part number consisting of five
characters. The first two characters are uppercase letters, the next two are numerals, and the last
character can be either another numeral or a lowercase revision code. The following example
demonstrates how to configure the HRC for this hypothetical scenario:

#define PART_LEN 5 // Five characters in entry

HRC hrcPart; // HRC for parts entry
GUIDE guidePart; // GUIDE for parts entry
ALC alcPart[PART_LEN]; // Array of ALC_ codes for entry

.

. // Initialize the GUIDE here

.
guidePart.cHorzBox = PART_LEN; // Number of boxes in entry
guidePart.cVertBox = 1; // Single row
guidePart.cyMid = 0; // No midline

iret = SetGuideHRC(hrcPart, (LPGUIDE)&guidePart, 0);

if (iret == HRCR_OK)
{

alcPart[0] = alcPart[1] = ALC_UCALPHA; // Uppercase in boxes 1-2
alcPart[2] = alcPart[3] = ALC_NUMERIC; // Numerals in boxes 3-4
alcPart[4] = ALC_LCALPHA | ALC_NUMERIC; // Lower or numeral in box 5

// Map alphabet codes onto boxes of parts number entry
SetBoxAlphabet(hrcPart, (LPALC)&alcPart, PART_LEN);

}

See Also

GetAlphabetHRC, SetAlphabetHRC, ALC_

SetGlobalRC       

1.0 2.0

Sets the current default settings for the global RC structure. In version 2.0 of the Pen API, the RC
structure is made obsolete by the HRC object.

Note This function is provided only for compatibility with version 1.0 of the Pen API and will not be
supported in future versions.

UINT SetGlobalRC(LPRC lprc, LPSTR lpszDefRecog, LPSTR lpszDefDict)

Parameters
lprc

Address of an RC structure or NULL.
lpszDefRecog

Address of string specifying the name of the default recognizer module (maximum 128 bytes).
lpszDefDict

Address of a string specifying the default dictionary path. The list should end with two null characters.

Return Value
Returns the value SGRC_OK if successful. If an error occurs, the return value consists of one or more of
the following values, combined using the bitwise-OR operator.

Constant Description
SGRC_USER An invalid user name was found in the

supplied RC structure. The call to
SetGlobalRC has no effect.

SGRC_PARAMERROR One or more invalid parameters were
detected. The call to SetGlobalRC has
no effect.

SGRC_RC The supplied recognition context lprc
has entries, other than the user name,
that contain invalid settings for a global
recognition context. The supplied
recognition context is ignored.

SGRC_RECOGNIZER The supplied recognizer module name
lpszDefRecog is invalid or the
recognizer cannot be loaded. The
supplied recognizer module name is
ignored.

SGRC_DICTIONARY The supplied dictionary path
lpszDefDict is invalid or some
dictionaries on the path cannot be
loaded. The supplied dictionary path is
ignored.

SGRC_INIFILE An error was encountered while saving
the new global recognition context

settings to the pen section of the
system registry. The new settings are
lost after rebooting Windows.

Comments
Because the default RC values are shared among all version 1.0 applications running, the values should
be changed only through the Control Panel. Whenever a change is made to the global RC values, the
WM_PENMISCINFO message is sent to all top-level windows. The wParam and lParam values are not
used, and they are set to 0.

Any of the parameters can be NULL to indicate that the calling application does not want the value
changed.

SetGlobalRC uses only the following members of the RC structure pointed to by the lprc parameter:

clErrorLevel lPcm (PCM_TIMEOUT and PCM_RANGE bits) lpLanguage lpUser nInkWidth rgbInk
wCountry wIntlPreferences wRcDirect wRcPreferences wTimeOut wTryDictionary

When InitRC is called for a new recognizer from within the SetGlobalRC call, the RC structure that is
passed in contains the new values for all members except hrec and rglpdf. No new recognizer and
dictionaries have been set up at this point.

When a version 1.0 application receives a WM_PENMISCINFO message, it should call
ConfigRecognizer with a WCR_RCCHANGE subfunction request. This should be done for all
recognizers that the application has loaded, excluding the default recognizer. The RC Manager calls
ConfigRecognizer in the new default recognizer with a WCR_RCCHANGE subfunction request.

SetGlobalRC does not save the RCP_MAPCHAR flag in the wRcPreferences member of the RC
structure to the system registry. The RCP_MAPCHAR flag is reflected in the global RC for the current
session only.

See Also
InitRC, GetGlobalRC, RC

SetGuideHRC       

2.0

Sets a guide structure into an HRC object.

int SetGuideHRC(HRC hrc, LPGUIDE lpguide, UINT nFirstVisible)

Parameters
hrc

Handle to the HRC object.
lpguide

Pointer to a GUIDE structure, or NULL. All coordinates are in screen coordinates.
nFirstVisible

For boxed controls, nFirstVisible refers to the first visible box (leftmost and topmost for left-right, top-
down languages like English). For other controls, this is the first visible character position (leftmost for
English) in a single-line control, and the first visible line (topmost for English) in multiline controls.

Return Value
Returns HRCR_OK if successful; otherwise, returns one of the following negative values:

Constant Description
HRCR_ERROR Invalid parameter or other error.
HRCR_INVALIDGUIDE The guide structure is invalid.
HRCR_MEMERR Insufficient memory.

Comments
This function is useful for doing boxed recognition. The GUIDE structure defines the size and position of
the boxes. The nFirstVisible parameter notifies the recognizer which is the first visible character position
(single-line controls) or line (multiline controls) in case the contents were scrolled. The writing direction
affects the meaning of this value.

If lpguide is NULL, or if all the members in the GUIDE structure are 0, the recognizer does not use guides
(free input).

See Also
GetGuideHRC, GUIDE

SetInternationalHRC
2.0

Sets the country, language, and script direction into a recognition context HRC.

int SetInternationalHRC(HRC hrc, UINT uCountry, LPCSTR lpszLangCode, UINT fuFlags, UINT uDir)

Parameters
hrc

Handle to the HRC object.
uCountry

The country code. A value of 0 indicates that this value should not be set.
lpszLangCode

A three-letter, null-terminated string identifying the language (for example, "enu" or "fra"), or NULL. A
value of NULL indicates that the language code should not be changed. For a list of three-letter
language identifiers, refer to Volume 1 of the Programmers Reference in the Windows Software
Development Kit.

fuFlags

Flags. can be either SIH_ALLANSICHAR to indicate the user intends to use the entire ANSI character
set, or 0.

uDir

The script direction. This parameter specifies which primary and secondary writing directions to set.
The default directions are left to right for the primary direction and top to bottom for the secondary. A
value of 0 indicates that the writing direction should not be changed. Possible values for uDir are:

Constant Description
SSH_RD Left to right and down (English).
SSH_RU Left to right and up.
SSH_LD Right to left and down (Hebrew).
SSH_LU Right to left and up.
SSH_DL Down and to the left (Chinese).
SSH_DR Down and to the right (Chinese).
SSH_UL Up and to the left.
SSH_UR Up and to the right.

Return Value
Returns HRCR_OK if successful; otherwise, returns one of the following negative values:

Constant Description
HRCR_ERROR Invalid parameter or other error.
HRCR_MEMERR Insufficient memory.
HRCR_UNSUPPORTE
D

The recognizer does not support this
function.

Comments

Setting fuFlags to the value of SIH_ALLANSICHAR indicates the recognizer should interpret text written
in any language based on ANSI characters. To constrain recognition to a particular language, an
application should set fuFlags to 0 and provide the appropriate language code in lpszLangCode.

SetInternationalHRC overrides the default ALLANSICHAR setting in the recognizer set by ConfigHREC
for the life of the HRC object. ConfigHREC should be used to change the default value.

See Also
GetInternationalHRC, ConfigHREC

SetMaxResultsHRC       

2.0

Sets the maximum number of guesses a recognizer should make when interpreting pen data. When the
recognizer formulates this number of results, the recognition process ends.

int SetMaxResultsHRC(HRC hrc, UINT cMaxResults)

Parameters
hrc

Handle to the HRC object for the recognizer.
cMaxResults

The maximum number of results a recognition context should generate. This value must be greater
than 0.

Return Value
Returns HRCR_OK if successful; otherwise, returns one of the following negative values:

Constant Description
HRCR_ERROR Invalid parameter or other error.
HRCR_MEMERR Insufficient memory.
HRCR_UNSUPPORTE
D

The recognizer does not support this
function.

Comments
Subsequent calls to SetMaxResultsHRC override any previous settings. If the application does not call
SetMaxResultsHRC to explicitly set a maximum value, the default number of results generated is 1.

See Also
GetMaxResultsHRC, CreateCompatibleHRC

SetPenAppFlags       

2.0

An application calls this function to set pen-specific properties that apply globally to the application. This
function replaces and enhances the RegisterPenApp function from version 1.0 of Pen Windows.

void SetPenAppFlags(UINT fuFlags, UINT uVersion)

Parameters
fuFlags

Flags specifying application options. The following flags can be combined by using the bitwise-OR
operator:

Constant Description
RPA_HEDIT Specifies that the system should treat

any EDIT-class controls in the
application as having HEDIT class.

RPA_KANJIFIXEDBEDIT Boxed edit controls are a fixed size
appropriate for use with kanji.
(Japanese version only.)

RPA_DBCSPRIORITY By default, double-byte equivalents of
single-byte characters (as used in
Japan) are preferred in recognition
results.

RPA_SBCSPRIORITY By default, single-byte characters are
preferred in recognition results.
(Japanese version only.)

RPA_DEFAULT Specifies default pen behavior for the
application. This includes
RPA_HEDIT.

uVersion

The Pen API version number. The nonzero value PENVER causes the application to be registered
with Windows. A value of 0 unregisters the application.

Return Value
This function does not return a value.

Comments
SetPenAppFlags should be called when an application starts with PENVER for the uVersion parameter.
PENVER is the Pen API version number, defined in PENWIN.H.

PENVER ensures that the structures used are appropriate for the version of the Pen API for which the
application was compiled. In version 1.0, uVersion was a BOOL value, so by default the version number
was 0x0001. Beginning with Pen API version 2.0, PENVER contains the major release number in the
HIBYTE and the minor release number in the LOBYTE. Thus, for version 2.0, PENVER is defined as
0x0200.

When an application terminates, it should call SetPenAppFlags with uVersion set to 0. An application can
unregister itself in this way more than once without error to accommodate alternative exit code paths.

An application can call GetPenAppFlags to determine which flags were set by an earlier call to
SetPenAppFlags. However, normally only the system requires this information.

Applications written specifically for Windows 95 and later Windows versions automatically get
RPA_DEFAULT so that any edit controls created by such applications become pen-aware.

See Also
GetPenAppFlags

SetPenHook       

1.0 2.0

Installs and removes a pen packet hook. This function is typically used by system-level applications such
as Control Panel applications.

BOOL SetPenHook(HKP hkpOp, LPFNRAWHOOK lpfn)

Parameters
hkpOp

Operation to be performed. This parameter can be HKP_SETHOOK to install a hook or
HKP_UNHOOK to remove a function from the hook list.

lpfn

Pointer to callback function to handle pen packets.

Return Value
Returns TRUE if successful or FALSE if GetPenInput is unable to set or remove the hook. The callback
function returns FALSE to cancel the processing of a pen packet.

Comments
The pen device generates approximately 100 hardware interrupts per second. At each interrupt, the
device sends data to the pen driver, which organizes the data into a pen packet. Each packet contains the
x- and y-coordinates of the current pen position, the time, and possibly extra OEM data such as pen
pressure, angle, and so forth. The pen device may require more than one hardware interrupt to send all
the information for a single packet, so the rate at which the driver sends pen packets may be less than the
rate of interrupts generated by the pen hardware.

When it has created a pen packet, the driver passes it to the system, which buffers the packets in an
internal queue as they arrive from the pen driver. The internal queue is informally known as the "ten-
second buffer" to indicate how much data it can hold before overflowing. An application must call
GetPenInput regularly to remove data from the queue.

SetPenHook enables an application to examine, modify, or cancel pen packets as they arrive from the
pen driver before GetPenInput sees them.

See Also
SetPenHookCallback, SetResultsHookHREC, GetPenInput

SetPenHookCallback
1.0 2.0

SetPenHookCallback represents the name of the callback function that the lpfn argument of
SetPenHook points to. An application can use any name.

BOOL lpfn SetPenHookCallback(LPPENPACKET lppp)

Parameters
lppp

Far pointer to the most recent pen packet received from the pen driver.

Return Value
Returns TRUE to continue processing, FALSE to cancel pen packet.

Comments
For a definition of pen packet, see the description for SetPenHook.

At each interrupt, the system adds the latest packet from the pen driver to an internal queue. It then calls
the application's SetPenHookCallback callback function, providing it with a pointer to the latest packet in
the queue. This enables the callback function to examine, modify, or cancel each pen packet as it arrives
from the pen driver.

To get the pen packet data from a version 2.0 pen driver, defined as OEM_PENPACKET, simply cast the
LPPENPACKET value passed into this function to the type LPOEM_PENPACKET. The pen services
detect the pen driver version automatically and return the correct data pen packet data type.

See Also
SetPenHook, PENPACKET

SetPenMiscInfo       

1.0 2.0

Sets constants pertaining to the pen system.

LONG SetPenMiscInfo(UINT wParam, LPARAM lParam)

Parameters
wParam

Specifies the identifier of the pen system measurement to set. The identifier must be a PMI_ value,
and may be combined with PMI_SAVE (to force an immediate initialization file update) using the
bitwise-OR operator for some values. See the following table for the possible PMI_ values in wParam.

lParam

Specifies the value of the pen system measurement to set. Depending on the value of wParam (listed
in the first column of the table below), lParam can be the address of a structure or a value, as
described here:

wParam constant lParam description
PMI_BEDIT lParam is the address of a

BOXEDITINFO structure.
PMI_ENABLEFLAGS lParam is a WORD value.
PMI_PENTIP lParam is the address of a PENTIP

structure.
PMI_TIMEOUT lParam is a UINT value.
PMI_TIMEOUTGEST lParam is a UINT value.
PMI_TIMEOUTSEL lParam is a UINT value.

Return Value
Returns PMIR_OK if successful; otherwise, returns one of the following negative error values:

Constant Description
PMIR_INDEX wParam is out of range.
PMIR_INIERROR Error writing to PENWIN.INI file.
PMIR_INVALIDBOXEDITINFO BOXEDITINFO structure is invalid.
PMIR_NA Support for this value of wParam is

not available.
PMIR_VALUE lParam is invalid.

Comments
The type of information SetPenMiscInfo sets depends on wParam. The function is provided for system
applications such as Control Panel. User applications should not generally call SetPenMiscInfo.

A WM_PENMISCINFO message is posted to all top-level windows whenever SetPenMiscInfo
successfully changes a setting, forwarding the value for wParam. In the case of PMI_BEDIT, a
WM_PENMISC message is also broadcast to ensure compatibility with version 1.0 of the Pen API. The
wParam is set to PMSC_BEDITCHANGE and lParam is a far pointer to a BOXEDITINFO structure.

SetPenMiscInfo cannot set all the values available in GetPenMiscInfo because certain values are
determined by the system. These values are PMI_SYSREC, PMI_CXTABLET, PMI_CYTABLET,
PMI_SYSFLAGS, PMI_TICKREF, PMI_INDEXFROMRGB, and PMI_RGBFROMINDEX.

The flag PMI_SAVE can be combined with the wParam identifier for the following values: PMI_BEDIT,
PMI_ENABLEFLAGS, PMI_PENTIP, PMI_TIMEOUT, PMI_TIMEOUTGEST, and PMI_TIMEOUTSEL.
This forces Windows to immediately update its initialization information.

Example
The following code sample changes the pen color to red and the time out to a half second (500
milliseconds), then forces a save-file update:

PENTIP tip;

GetPenMiscInfo(PMI_PENTIP, (LPARAM)(LPPENTIP) &tip);
tip.rgb = RGB(255, 0, 0);
SetPenMiscInfo(PMI_PENTIP, (LPARAM)(LPPENTIP) &tip);
SetPenMiscInfo(PMI_TIMEOUT | PMI_SAVE, (LPARAM)500);

See Also

GetPenMiscInfo, WM_PENMISCINFO, PMI_

SetRecogHook       

1.0 2.0

Installs and removes a recognition hook. This function works only for Pen API version 1.0 recognizers
accessed through Recognize or RecognizeData.

Note This function is provided only for compatibility with version 1.0 of the Pen API and will not be
supported in future versions. Use SetResultsHookHREC instead.

BOOL SetRecogHook(UINT uScope, UINT uSetOp, HWND hwndHook)

Parameters
uScope

Scope of hook. The hook parameter uSetOp determines the scope of the hook. The following table
lists the HWR_ values for uSetOp:

Constant Description
HWR_RESULTS The hook window receives a

WM_HOOKRCRESULT message before a
WM_RCRESULT message is sent to the
target window.

HWR_APPWIDE The hook window receives the message
WM_HOOKRCRESULT before a
WM_RCRESULT message is sent to the
target window if the target window belongs
to the same task as the window that set an
HWR_APPWIDE hook. This is useful for
implementing application-wide gestures.
The RCRT_ALREADYPROCESSED flag is
set in the wResultsType member of the
RCRESULTS structure sent with
WM_RCRESULT if an application-wide
hook has already processed the data.

uSetOp

Parameter to determine whether hook is set or removed. The operation parameter uSetOp
determines whether the hook is set or removed. The following table lists the HKP_ values for uScope:

Constant Description
HKP_SETHOOK Installs a hook.
HKP_UNHOOK Removes function from hook list.

hwndHook

Handle to a window.

Return Value
Returns TRUE if successful; otherwise, FALSE.

Comments
SetRecogHook enables a version 1.0 application to examine the results of recognition before they are
sent to the target application.

The hook message is WM_HOOKRCRESULT. The wParam and lParam parameters are the same as for
the WM_RCRESULT message. If the window procedure that receives the WM_HOOKRCRESULT
message returns FALSE, the message WM_HOOKRCRESULT is not sent to any of the remaining hooks
in the chain.

No drawing should occur during the processing of the WM_HOOKRCRESULT and before recognition is
complete. Drawing at these times could cause timing problems, with ink reappearing in formerly invisible
controls as they are redrawn.

See Also
SetResultsHookHREC

SetResultsHookHREC       

2.0

Sets up a hook callback function for recognition results.

HRECHOOK SetResultsHookHREC(HREC hrec, HRCRESULTHOOKPROC lpfnHook)

Parameters
hrec

Module handle of the recognizer library whose results are to be hooked. If hrec is set to NULL, the
hook function specified in lpfnHook receives results from the system default recognizer. If hrec is set
to SRH_HOOKALL, the hook function receives results for all recognizers the application has installed,
including the system recognizer.

lpfnHook

Address of the hook function.

Return Value
Returns a handle to the installed hook if successful; otherwise, the return value is NULL. The application
must provide this handle when calling UnhookResultsHookHREC to remove the hook.

Comments
An application can set multiple hooks. The system calls the hooks in reverse order ¾that is, the most-
recently-set hook is called first, then the previous hook, and so on. If a hook function captures a result, the
function that requested the results returns HRCR_HOOKED to the application.

See Also
ResultsHookHREC, UnhookResultsHookHREC

SetStrokeAttributes       

2.0

Sets attributes of a stroke or of a class of strokes in an HPENDATA object.

int SetStrokeAttributes(HPENDATA hpndt, UINT iStrk, LPARAM lParam, UINT uOption)

Parameters
hpndt

Handle to the HPENDATA object.
iStrk

Zero-based stroke index. A value of IX_END can be used to specify the last available stroke in the
pen data.

lParam

A pointer to a structure (cast to the LPARAM type), or a byte, word, or double-word value, depending
on uOption. This parameter cannot be NULL.

uOption

Specifies the attributes to set. This parameter has one of the following values:
Constant Description
SSA_DOWN Set the up and down state of the pen tip

for the stroke specified by iStrk. lParam is
nonzero to make it a downstroke or 0 to
make it an upstroke.

SSA_PENTIP Set the pen-tip characteristics (color, width,
nib type) used by the stroke specified by
iStrk. lParam is a pointer to a PENTIP
structure. If this attribute does not already
exist in the stroke class table, a new entry
for this type of stroke is created. There can
be up to 255 different types of strokes.

SSA_PENTIPCLASS Set the pen-tip characteristics (color, width,
nib) for all strokes of which the stroke
specified by iStrk is a member. lParam is a
pointer to a PENTIP structure. If the new
type already exists in the stroke class
table, the types are merged.

SSA_SELECT Set the selection status of the stroke
specified by iStrk. lParam is nonzero to
select it or 0 to deselect it.

SSA_TIME Set the absolute time of the stroke. lParam
is a pointer to an ABSTIME structure. The
sec member of the ABSTIME structure
specifies the number of seconds since Jan
1, 1970, and the ms member specifies the
number of milliseconds offset from that
time to the beginning of the stroke.

SSA_USER Set the user value for the stroke specified

by iStrk. lParam is a BYTE, WORD, or
DWORD value, and the pen data must
have been created with the corresponding
size allocated for user values.

SSA_USERCLASS Set the user value for the class of strokes
of which the stroke specified by iStrk is a
member. lParam is a BYTE, WORD, or
DWORD value, and the pen data must
have been created with the corresponding
size allocated for user values.

Return Value
Returns PDR_OK if successful; otherwise, returns one of the following negative values:

Constant Description
PDR_COMPRESSED Pen data is compressed.
PDR_ERROR Parameter or other unspecified error.
PDR_MEMERR Memory error.
PDR_PNDTERR Invalid pen data.
PDR_SCTERR Stroke class table may be full, or related

error.
PDR_STRKINDEXERR Invalid stroke index.
PDR_TIMESTAMPERR Timing information was removed.
PDR_VERSIONERR Could not convert old pen data.

Comments
The bounding rectangle of the pen data is recalculated each time the SSA_DOWN option is used,
because the rectangle represents the bounds of only the pen-down points. Setting a pen-up point to the
down state simply adds (union) the bounding rectangles of the existing pen data and the stroke. Setting a
pen-down point to the up state is more calculation-intensive, however, since the bounding rectangle must
be calculated from all of the remaining strokes.

See Also
CreatePenDataEx, GetStrokeAttributes, GetStrokeTableAttributes, SetStrokeTableAttributes,
PENTIP

SetStrokeTableAttributes       

2.0

Sets attributes of a stroke's class within an HPENDATA object. (The class is an entry in a table stored in
the PENDATAHEADER structure. Modifying the table entry affects all the strokes described by the entry.)

int SetStrokeTableAttributes(HPENDATA hpndt, UINT iTblEntry, LPARAM lParam, UINT uOption)

Parameters
hpndt

Handle to the HPENDATA object.
iTblEntry

Zero-based table index to the class entry in the pen data header.
lParam

A pointer to a structure (cast to the LPARAM type), or a byte, word, or doubleword value, depending
on uOption. This parameter cannot be NULL.

uOption

Specifies the attributes to set. This parameter can be one of the following:
SSA_PENTIPTABLE

Set the pen-tip characteristics (color, width, nib) of the class of strokes specified by iTblEntry.
lParam is a pointer to a PENTIP structure. All the strokes sharing this entry in the stroke class table
receive the new pen-tip attribute.

SSA_USERTABLE

Set the user value, if any, of the class of strokes specified by iTblEntry. lParam is a byte, word, or
doubleword value, and the pen data must have been created with the corresponding size allocated
for user values. All the strokes sharing this stroke class table entry receive the new user value.

Return Value
Returns PDR_OK if successful; otherwise, returns one of the following negative values:

Constant Description
PDR_COMPRESSED Pen data is compressed.
PDR_ERROR Parameter or other unspecified error.
PDR_MEMERR Memory error.
PDR_PNDTERR Invalid pen data.
PDR_SCTERR Stroke class table may be full, or related

error.
PDR_VERSIONERR Could not convert old pen data.

See Also
CreatePenDataEx, GetStrokeAttributes, GetStrokeTableAttributes, SetStrokeAttributes, PENTIP

SetWordlistCoercionHRC       

2.0

Specifies to what degree input must match a word list set into an HRC. SetWordlistCoercionHRC
determines the influence a recognizer's word list or dictionary has on the recognizer's guesses.

int SetWordlistCoercionHRC(HRC hrc, UINT uCoercion)

Parameters
hrc

Handle to the HRC object.
uCoercion

Coercion flag. This can be one of the following:
SCH_ADVISE

The word list serves only to advise the recognizer, but lacks a strong degree of influence.
Recognition results are not strongly coerced to match the word list.

SCH_FORCE

If the recognizer's guess is not found in the word list, the closest matching entry in the list is
returned. For example, if the recognizer interprets writing as "Cana", it returns "Canada" from a
word list of country names.

SCH_NONE

Do not coerce. This flag can be used to turn off a previous request.

Return Value
Returns HRCR_OK if successful; otherwise, returns one of the following negative values:

Constant Description
HRCR_ERROR Invalid parameter or other error, including an

attempt to set coercion with no word lists set
into the recognition context.

HRCR_MEMERR Insufficient memory.
HRCR_UNSUPPORTE
D

The recognizer does not support this
function.

Comments
The default type of coercion a recognizer provides is SCH_ADVISE. That is, results are not strongly
coerced to any word list that might be set into a recognition context.

Coercion is used only if a word list (HWL) has actually been set into an HRC with SetWordlistHRC, or if
the recognizer's dictionary is enabled by EnableSystemDictionaryHRC. If the HRC is configured with a
word list and the recognizer's dictionary is also enabled, coercion is done on both; the priority depends on
the recognizer.

See Also
CreateHWL, GetWordlistCoercionHRC

SetWordlistHRC       

2.0

Sets a word list into a recognition context HRC object.

int SetWordlistHRC(HRC hrc, HWL hwl)

Parameters
hrc

Handle to the HRC object.
hwl

Handle to a word list to use, or NULL. A value of NULL means that the recognizer should not
constrain recognition based on any word list, including its own dictionary.

Return Value
Returns HRCR_OK if successful; otherwise, returns one of the following negative values:

Constant Description
HRCR_ERROR Invalid parameter or other error.
HRCR_MEMERR Insufficient memory.
HRCR_UNSUPPORTE
D

The recognizer does not support this
function.

Comments
Specifying NULL for hrc does not destroy the word list specified by hwl. Applications must call
DestroyHWL to destroy a word list.

Only one word list can be set into an HRC at a time. This is independent of the recognizer's dictionary,
which can be manipulated through the function EnableSystemDictionaryHRC.

For a description of word lists and how a recognizer uses them, see "Configuring the HRC" in Chapter 5,
"The Recognition Process."

See Also
CreateHWL, DestroyHWL

ShowKeyboard       

1.0 2.0

Shows or hides the on-screen keyboard. (Not supported in Japanese version.)

Note This function is provided only for compatibility with version 1.0 of the Pen API, and will not be
supported in future versions. It is not supported for 32-bit applications. Applications should interface
directly with the on-screen keyboard.

BOOL ShowKeyboard(HWND hwnd, UINT wCommand, LPPOINT lppt, LPSKBINFO lpSKBInfo)

Parameters
hwnd

Handle of window invoking the on-screen keyboard.
wCommand

A show request and optional keypad. The values for the show requests are listed in the "Comments"
section below.

lppt

Address of a POINT structure containing the keyboard position in screen coordinates. If NULL, the
keyboard appears centered on the display.

lpSKBInfo

Address of an SKBINFO structure to be filled with values for the current keyboard. This parameter is
ignored if NULL. If the hwnd member of the SKBINFO structure is NULL, no on-screen keyboard has
been loaded.

Return Value
Returns TRUE if successful; otherwise FALSE.

Comments
Any user action on the keyboard itself overrides the function requests. For example, if the user closes the
on-screen keyboard, the keyboard becomes unregistered for all windows in all applications. If the user
minimizes the keyboard, the active SKBINFO structure is changed to reflect the new state.

ShowKeyboard tracks registration information for up to 20 window handles. If one application displays
the keyboard and then another one does the same thing, both applications must request that the
keyboard be hidden before it actually disappears.

The following SKB_ requests can be specified in the wCommand parameter:

Constant Description
SKB_HIDE Hides the on-screen keyboard. This request

may not actually hide the keyboard if another
application is also using it. The command
decrements the use count for the keyboard.
SKB_HIDE automatically loads the on-
screen keyboard if it is not already present.

SKB_QUERY Returns the current state of the keyboard
pointed to
by the lpSKBInfo parameter without invoking
a new keyboard state. This command does
not automatically load the on-screen
keyboard.

SKB_SHOW Shows the on-screen keyboard in a restored
state at
the most recently used screen location. This
command increments a window-use count.
SKB_SHOW automatically loads the on-
screen keyboard if it is not present.

The SKB_SHOW command in the wCommand parameter can be combined using the bitwise-OR
operator with any of the command or keypad requests listed in the following tables:

Constant Description
SKB_CENTER Centers the keyboard on the display. This

command
has higher priority than SKB_MOVE.

SKB_MINIMIZE Displays the on-screen keyboard in a
minimized state. This command can be used
with SKB_CENTER or SKB_MOVE. If it is
used with SKB_MOVE, the location specified
will be used when the keyboard is restored.

SKB_MOVE Moves the keyboard to the location specified
by the lppt parameter. If lppt is NULL, the
keyboard is centered on the screen. If it is
not NULL, lppt specifies a pointer to the x
and y screen coordinates of the upper-left
corner of the restored keyboard.

The following keypad requests can be used with SKB_SHOW in the wCommand parameter. The
SKB_BASIC, SKB_FULL, and SKB_NUMPAD constants can not be combined with the OR operator:

Constant Description
SKB_BASIC Switches the keyboard to a partial keyboard

with no extended keys.
SKB_FULL Switches the keyboard to the full 101-key

display.
SKB_NUMPAD Switches the keyboard to a partial keyboard

consisting only of ESC, TAB, SHIFT, and the
numeric keypad.

The following three bitmaps are provided for owner-draw push buttons that can be used to invoke the on-
screen keyboard. The application must process WM_DRAWITEM and other button-related code. On-
screen keyboard push buttons should behave the same way as other standard buttons (for example, the
Minimize button) and take the appropriate action when a button-up message is received following a
button-down message.

Constant Description
OBM_SKBBTNUP Push button is up.

OBM_SKBBTNDOWN Push button is down.
OBM_SKBBTNDISABL
ED

Push button is disabled.

Example
The up bitmap, for example, can be loaded as shown in the following code sample:

HANDLE hDLL = GetSystemMetrics(SM_PENWINDOWS);
HBITMAP hBitmap = LoadBitmap(hDLL,

MAKEINTRESOURCE(OBM_SKBBTNUP));
The application must call the Windows DeleteObject function to delete each bit-map handle returned by
the Windows LoadBitmap function.

The button should be left in the up state after it is released. If the user closes the keyboard and the
buttons are up, they will still be up the next time the keyboard is opened. The following code sample
retrieves the current keyboard and restores the current state:

#include <penwin.h>

if (ShowKeyboard(hwnd, SKB_SHOW, NULL, NULL)) // Nonzero: no error.
{

.

. // Perform some tasks.

.
ShowKeyboard(hwnd, SKB_HIDE, NULL, NULL);

}
else

ErrorMsg("Unable to use Screen Keyboard");

The following code sample moves the keyboard and then puts it back into its starting position:

SKBINFO skbinfo;
WORD wCommand = SKB_SHOW | SKB_MOVE;
POINT pnt;

pnt.x = wSKBLeft; // Initialize point.
pnt.y = wSKBTop;

// Show the keyboard.

ShowKeyboard(hwnd, wCommand, &pnt, &skbinfo);

.

.

.
// Now restore the keyboard.

if (skbinfo.fVisible)

wCommand = SKB_SHOW | SKB_MOVE |
(skbinfo.fMinimized ? SKB_MINIMIZED : 0);

else
wCommand = SKB_HIDE;

ShowKeyboard(hwnd, wCommand, (LPPOINT)(&skbinfo.rect), NULL) ;

StartInking       

2.0

Starts inking feedback while pen input is being collected.

int StartInking(HPCM hpcm, UINT idEvent, LPINKINGINFO lpinkinginfo)

Parameters
hpcm

Handle to the current collection. This is the return value from StartPenInput.
idEvent

The identifier of the packet at which to start inking.
lpinkinginfo

Address of an INKINGINFO structure, used to specify the characteristics of the ink. This parameter
can be NULL to use the default ink characteristics. Otherwise, the structure's cbSize member must
be initialized with sizeof(INKINGINFO).

Return Value
Returns PCMR_OK if inking started successfully; otherwise, returns one of the following:

Constant Description
PCMR_DISPLAYERR There is no display device, or it

was unable to ink at this time, or
there was an error in setting the
pen-tip characteristics.

PCMR_ERROR The INKINGINFO structure
contains invalid values, or there
was some other unspecified error.

PCMR_INVALIDCOLLECTION The hpcm handle is invalid
because the calling application did
not start input by calling
StartPenInput.

PCMR_INVALID_PACKETID The idEvent parameter is invalid.

Comments
An application calls StartInking to track pen movement while the pen tip is down. When pen input is
started by calling the StartPenInput function, Windows initializes the internal INKINGINFO structure as
follows:

· The wFlags member is set to PII_INKPENTIP | PII_INKCLIPRECT.
· The tip member is set to the system default pen tip, as obtained by calling the GetPenMiscInfo

function.
· The rectClip member is set to the client area, in screen coordinates, of the window that was used in

the call to the StartPenInput function.

The first call to StartInking with the lpinkinginfo parameter set to NULL starts inking with the settings
listed above. If the calling application uses a non-NULL value for lpinkinginfo, the appropriate internal

inking parameters are modified before inking starts, depending on the flags set in the wFlags member of
the INKINGINFO structure.

Whenever StartInking is called, the current settings of the internal inking structure are added to or
replaced. Specific values must be set in the members of INKINGINFO to disable them. Refer to the
description of each member in the INKINGINFO structure for these values.

If a region is passed in for clipping or stopping the ink, the application must destroy the region. Since a
copy is made, the region can be destroyed immediately following the call to StartInking. The application
can specify either a clip region or a clip rectangle. Specifying both will result in the clip rectangle being
ignored.

Example
The following code example changes the inking tip from the default (as set by a call to StartPenInput) to
red ink, 5 pixels wide. It also adds an inkstop rectangle (inking stops if the pen touches down inside the
inkstop rectangle). The clipping rectangle remains unchanged from the default settings.

INKINGINFO inkinginfo;

inkinginfo.cbSize = sizeof(INKINGINFO);
inkinginfo.wFlags = PII_INKPENTIP | PII_INKSTOPRECT;
inkinginfo.tip.cbSize = sizeof(PENTIP);
inkinginfo.tip.rgb = RGB(255,0,0);
inkinginfo.tip.bwidth = 5;
inkinginfo.rectInkStop.left = rectInkTop.top = 0;
inkinginfo.rectInkStop.right = rectInkTop.bottom = 100;

ClientToScreen(hwnd, (LPPOINT)&(inkinginfo.rectInkStop));
ClientToScreen(hwnd, (LPPOINT)&(inkinginfo.rectInkStop.right));
StartInking(hpcm, wEventRef, &inkinginfo);

See Also

INKINGINFO, StartPenInput, StopInking

StartPenInput       

2.0

Begins collecting information from the pen input stream.

HPCM StartPenInput(HWND hwnd, UINT idEvent, LPPCMINFO lppcmInfo, LPINT lpiErrRet)

Parameters
hwnd

Handle of the window that receives the WM_PENEVENT messages generated by StartPenInput.
idEvent

Identifies the packet in the global queue of pen packets maintained internally by the system. The
idEvent is the low-order word of the value returned from the GetMessageExtraInfo function when
processing a WM_LBUTTONDOWN message. For a definition of pen packet, see the description for
SetPenHook.

lppcmInfo

Address of a PCMINFO structure. If NULL, the system creates a default PCMINFO structure with the
following values:

Constant Description
dwPcm PCM_RECTBOUND | PCM_TIMEOUT |

PCM_TAPNHOLD
rectBound The bounding rectangle of the window identified

by hwnd
These values determine that the input session
(a) terminates when pen activity ceases for a
specified time-out period; (b) terminates when
the pen moves outside the bounds of the
window; or (c) does not begin at all if the user
taps and holds the pen for a specified time-out
period (about one-half second). This "tap-and-
hold" gesture switches the system from input
mode to selection mode. Usually, the cursor
changes from a pen (indicating input) to an
upside-down arrow (indicating selection) to
acknowledge the switch. Subsequent pen
movement then behaves as a mouse with the
left button held down. This allows the user to
make selections as though dragging the mouse.

lpiErrRet

Address of an integer that receives a return code when StartPenInput terminates. If NULL, no return
code is provided. If not NULL, the return code is one of the following values:

Constant Description
PCMR_OK Pen collection was successfully

started.

PCMR_ALREADYCOLLECTIN
G

StartPenInput has already been
called for this session.

PCMR_ERROR Illegal parameter or unspecified
error.

PCMR_INVALID_PACKETID Invalid idEvent parameter.
PCMR_SELECT Tap-and-hold gesture detected.

Collection is not started, as
described in the description of the
lppcmInfo parameter.

PCMR_TAP The pen has briefly tapped the
tablet. This event may be
inadvertent and in any case does
not indicate that the user has
started to write; therefore,
collection is not started.

Return Value
Returns a handle to the application's queue of pen packets, if successful. Returns NULL to indicate an
error or the detection of a tap or press-and-hold condition.

Comments
When this function returns successfully, Windows creates a queue of pen packets for the calling
application. All subsequent pen packets from the pen device, beginning with the packet identified by the
idEvent argument, are placed into the queue. Until a termination condition occurs (as specified in the
lppcmInfo parameter), or until the application calls StopPenInput, the queue continues to receive all the
packets generated by the pen device as the pen moves.

An application can retrieve all the pen input in its queue of pen packets but should never destroy the
queue.

In event mode (the default mode), the collection session specified by the hpcm of the GetPenInput
function becomes invalid when the WM_PENEVENT message (with the PE_TERMINATED submessage)
is removed from the application's message queue. This message is posted to the application's message
queue either as a consequence of automatic termination or a call to StopPenInput.

In polling mode, the application's queue of pen packets is destroyed (and the hpcm of GetPenInput
becomes invalid) after a successful call to StopPenInput or a termination return value from the
GetPenInput function.

If lppcmInfo is NULL, a default PCMINFO structure is established with the dwPcm member set to
PCM_RECTBOUND | PCM_TIMEOUT | PCM_TAPHOLD, the rectBound member set to the bounds of
hwnd, and the dwTimeout member set to the default system time out.

If the dwPcm member of PCMINFO does not have the PCM_DOPOLLING flag set, WM_PENEVENT
messages are sent to the specified window for significant events such as pen down, pen up, or after
some threshold number of points has been received. Otherwise, the application should poll for data using
GetPenInput.

Other bits in the dwPcm member of PCMINFO can be used to determine which conditions, if any,
terminate pen input. An application can also call StopPenInput to explicitly terminate the input.

Example
The following example initiates pen input in a window procedure on detection of pen down:

static HPCM vhpcm;
//... omitted ...

switch (message)
{

case WM_LBUTTONDOWN:

{

// Get extra info associated with event:

DWORD dwExtraInfo = GetMessageExtraInfo();

if (IsPenEvent(message, dwExtraInfo)) // Checks PDK bits
{

PCMINFO pcminfo; // Pen collection mode structure

pcminfo.cbSize = sizeof(PCMINFO);
pcminfo.dwPcm = PCM_RECTBOUND | PCM_TIMEOUT;
pcminfo.dwTimeout = dwTimeOutDefault; // 1 second

// Set inclusion rect to client area, but in screen coords:

GetClientRect(hwnd, &pcminfo.rectBound);
ClientToScreen(hwnd, (LPPOINT) &pcminfo.rectBound);
ClientToScreen(hwnd, (LPPOINT) &pcminfo.rectBound.right);

// Start gathering input:

if (vhpcm = StartPenInput(hwnd,

LOWORD(dwExtraInfo), &pcminfo, NULL))
return 1L; // We handled it

}

// Else fall into DefWindowProc below...

}
break;

See Also

GetPenInput, StopPenInput, PCMINFO WM_PENEVENT, PCM_

StopInking       

2.0

Stops inking feedback.

int StopInking(HPCM hpcm)

Parameters
hpcm

Handle to the current collection. This is the return value from StartPenInput.

Return Value
Returns PCMR_OK if successful; otherwise, returns the following value:

Constant Description
PCMR_INVALIDCOLLECTION The hpcm handle is invalid, or

there is no collection, or inking has
not been started.

Comments
Inking must have been started by using the StartInking function for this function to have any effect.

See Also
StartInking

StopPenInput       

2.0

Terminates collection of pen input.

int StopPenInput(HPCM hpcm, UINT idEvent, int nTermReason)

Parameters
hpcm

Handle to the collection of the pen data gathered during the input session. HPCM stands for "handle
to a pen collection mode."

idEvent

The identifier of the packet in the task-specific queue at which the pen input should be terminated. If
this value is PID_CURRENT, pen input stops immediately (that is, at the latest position in the task
queue) and no further input is collected. The idEvent parameter is the low-order word of the value
returned from the Windows GetMessageExtraInfo function when processing a
WM_LBUTTONDOWN message.

nTermReason

The reason for termination. This value is passed to the termination message PE_TERMINATED. It
can be one of the following:

Constant Description
PCMR_APPTERMINATED Application terminated input.
PCMR_TERMBOUND Pen was pressed outside

bounding rectangle or region.
PCMR_TERMEX Pen was pressed inside exclusion

rectangle or region.
PCMR_TERMPENUP Pen was lifted from the tablet.
PCMR_TERMRANGE Pen left the tablet's range of

sensitivity.
PCMR_TERMTIMEOUT Time-out expired.

Return Value
Returns PCMR_OK if successful; otherwise, the return value can be one of the following:

Constant Description
PCMR_INVALIDCOLLECTION The hpcm handle is invalid

because the calling application did
not start input with StartPenInput.

PCMR_INVALID_PACKETID idEvent is invalid.

Comments
This function allows an application to explicitly terminate pen collection without waiting for one of the
conditions specified by StartPenInput in the dwPcm member of PCMINFO.

Due to the asynchronous nature of pen input messages, the application should wait for the
WM_PENEVENT message with wParam set to PE_TERMINATED to make sure that the pen input

process has completely terminated. This does not apply if the application is using the polling method of
pen input.

See Also
StartPenInput

SymbolToCharacter       

1.0 2.0

Converts an array of SYV_ symbol values to an ANSI string.

BOOL SymbolToCharacter(LPSYV lpsyv, int cSyv, LPSTR lpstr, LPINT lpnConv)

Parameters
lpsyv

Address of the array of SYV_ symbol values.
cSyv

Count of symbols in the lpsyv array, including the terminating SYV_NULL.
lpstr

Address of a buffer that receives the ANSI string. The buffer should be large enough to hold at least
cSyv number of ANSI characters (including SYV_NULL).

lpnConv

If not NULL, lpnConv contains the number of symbols converted when the function returns. If NULL,
this parameter is ignored.

Return Value
Returns TRUE if successful. If one or more symbols cannot be converted to ANSI, the return value is
FALSE.

Comments
For ANSI characters, the size of the lpstr buffer must be at least cSyv bytes. For double-byte characters
(kanji, for example), the buffer size must be at least (2 * cSyv) bytes. The SymbolToCharacter function
converts at most cSyv symbol values from lpsyv and places the equivalent ANSI characters in the lpstr
buffer. The conversion proceeds until an SYV_NULL value is encountered or until cSyv symbols have
been converted. An SYV_NULL is converted to 0. The actual number of symbols converted is returned in
lpnConv if lpnConv is not NULL.

See Also
CharacterToSymbol, SYG, SYV_

TargetPoints       

2.0

Determines the target to which pen data belongs.

int TargetPoints(LPTARGINFO lptarginfo, LPPOINT lppt, DWORD dwReserved, UINT fuReserved,
LPSTROKEINFO lpsi)

Parameters
lptarginfo

Address of a targeting data TARGINFO structure.
lppt

Address of a buffer of POINT structures in tablet coordinates.
dwReserved

This parameter is reserved for future use and its value is ignored.
fuReserved

This parameter is reserved for future use and its value is ignored.
lpsi

A pointer to a STROKEINFO structure. This structure holds information about the stroke being
targeted.

Return Value
Returns an array index, starting from 0, of the target in the rgTarget array of the TARGINFO structure, if
successful. If no suitable target is found, or if there are no points to target, TargetPoints returns -1.

Comments
To select the desired targeting behavior, the application should set the dwFlags member of the
TARGINFO structure that lptarginfo points to.

See Also
GetPenInput, TARGET, TARGINFO

TPtoDP       

1.0 2.0

Converts points in tablet coordinates to display (screen) coordinates.

BOOL TPtoDP(LPPOINT lppt, int cPnt)

Parameters
lppt

Address of an array of POINT structures to convert to display coordinates. This parameter cannot be
NULL.

cPnt

Number of POINT structures to convert.

Return Value
Returns TRUE if the conversion was successful; otherwise, returns FALSE.

Comments
The conversion fails if some tablet points lie outside the region mapped to the screen.

Because of rounding errors, the DPtoTP and TPtoDP functions are not guaranteed to be perfect inverses
of each other.

See Also
DPtoTP

TrainContext       

1.0 2.0

Provides the recognizer a previous recognition result that may contain errors, plus the correct
interpretation of the raw data.

Note This function is provided only for compatibility with version 1.0 of the Pen API and will not be
supported in future versions. Use TrainHREC instead.

BOOL TrainContext(LPRCRESULT lprcresult, LPSYE lpsye, int csye, LPSYC lpsyc, int csyc)

Parameters
lprcresult

Address of the RCRESULT structure containing the handle to the pen data that contains the raw data
and the recognizer's original interpretation of that data. This parameter cannot be NULL.

lpsye

Address of an array of SYE structures that specify the correct interpretation of the raw data. The
values of the iSyc members of these structures index the SYC structures pointed to be the lpsyc
parameter.

csye

The number of SYE structures in the lpsye array.
lpsyc

An array of SYC structures that establish the mapping between the raw data and the characters in the
hpendata member of the structure pointed to by the lprcresult parameter.

csyc

The number of SYC structures in the lpsyc array.

Return Value
Returns TRUE if the ink is accepted for training; otherwise, returns FALSE.

Comments
TrainContext is called by an application with a recognition result that may contain mistakes, along with a
correct interpretation, so that the recognizer can learn from the mistake and improve subsequent
recognition. A second, simpler training function for 1.0 recognizers is provided by TrainInk.

TrainContext internally calls the function TrainContextInternal exported by the recognizer identified by
the hrec member of the RC structure pointed to by the lprc member of the RCRESULT structure. A
version 1.0 recognizer should export both TrainContextInternal and TrainInkInternal, but can simply
return FALSE from both functions if the recognizer does not support this type of training.

When a training application is able to provide contextual information (such as segmentation suggestions)
to the version 1.0 recognizer, it calls the TrainContext function. The lprcresult parameter points to an
RCRESULT structure that contains the results of a previous recognition. The raw data is also contained in
the hpendata member of the structure pointed to be lprcresult.

In addition to providing the incorrect interpretation of the data (by means of the symbol graph, the lpsyv

member in the RCRESULT structure), a more detailed, correct interpretation is also provided by the SYE
structures and SYC structures. Because the correct interpretation is passed by SYE structures, it is
possible to suggest segmentation boundaries to the recognizer.

Suppose, for example, that a user writes "lc," and the recognizer interprets it as "k". A trainer calls
TrainContext using, first, an array of SYC structures that point to the ink of the "lc" and, second, the two
SYE structures with the SYV values "l" and "c". These two SYE structures share the same index into the
lpsyc array, indicating that both use the ink that was interpreted as "k".

Segmentation errors can be corrected in the other direction as well. Suppose, for example, the user writes
"k" and the recognizer interprets it as "lc". A trainer could call TrainContext using a single SYE with SYV
values equal to "k" and an array of SYC structures that incorporate the ink the recognizer had previously
assigned to the "l" and the "c".

To train several SYV symbol values to a single piece of ink (for example, a long stroke that is an "he"
ligature), there will be two consecutive SYE structures¾one for the "h" and one for the "e". Both SYE
structures have the same iSyc member; this means that the SYE structures both point to the same ink. A
recognizer must take this into consideration to avoid training the two characters separately using the
same ink for both; that would result in having "he" trained as "he he".

A recognizer can supply its own custom training dialog boxes. An application should check whether the
recognizer supports custom training by calling ConfigRecognizer with the WCR_TRAIN subfunction.

The trainer does not display an error message if TrainInk or TrainContext returns FALSE. Error
messages that occur when training fails must be handled by the recognizer.

See Also
ConfigRecognizer, TrainInk, TrainHREC, SYC, SYE, SYV_

TrainHREC       

2.0

Passes ink and its symbol interpretation to the recognizer for training.

int TrainHREC(HREC hrec, LPSYV lpsyv, UINT cSyv, HPENDATA hpndt, UINT uConflict)

Parameters
hrec

Module handle of the recognizer library. If this value is NULL, the system default recognizer is used.
lpsyv

Address of an array of symbols to train.
cSyv

Count of symbols in lpsyv. This must be greater than 0.
hpndt

Handle to an HPENDATA object.
uConflict

One of the following TH_ values that specify how to handle training conflicts:
Constant Description
TH_QUERY Query the user if the proposed training

conflicts with symbols in the database.
TH_FORCE Perform the training without querying the

user, even if there is a conflict with the
database.

TH_SUGGEST Abandon the training if there is any conflict
with the database and return an error
(HRCR_CONFLICT).

Return Value
Returns HRCR_OK if training is successful; otherwise, returns one of the following negative values:

Constant Description
HRCR_ERROR Invalid parameter or other error.
HRCR_CONFLICT TH_SUGGEST was specified but there was

a conflict with the database. No training was
done.

HRCR_INVALIDPNDT Invalid HPENDATA object.
HRCR_MEMERR Insufficient memory.
HRCR_UNSUPPORTE
D

The recognizer does not support this
function.

Comments
Typically, an application calls TrainHREC to train a single symbol. In other words, lpsyv points to a single
symbol that is followed by an SYV_NULL terminator. However, multiple symbols¾for example, those

representing the character string "ng"¾may also be trainable, depending on the recognizer.

If uConflict is TH_QUERY, the recognizer is free to prompt the user with a dialog box to resolve training
conflicts. If it is TH_FORCE, the training is performed regardless of conflicts and the original conflicting
data may be lost. TH_SUGGEST trains the recognizer only if there are no conflicts; otherwise, the call
fails and returns HRCR_CONFLICT.

If the user picks a meaning for some ink from a list of alternatives, such as in a boxed edit control, the
application can elect to train the recognizer with this information. In this case, either TH_FORCE or
TH_SUGGEST is a suitable value for uConflict.

Training gestures depends on the recognizer. The Microsoft Handwriting Recognizer (GRECO.DLL) does
not support training for gestures.

See Also
CreateCompatibleHREC

TrainInk       

1.0 2.0

Provides raw data and a correct interpretation of the data to the recognizer.

Note This function is provided only for compatibility with version 1.0 of the Pen API and will not be
supported in future versions. Use TrainHREC instead.

BOOL TrainInk(LPRC lprc, HPENDATA hpndt, LPSYV lpsyv)

Parameters
lprc

Address of an RC structure, or NULL. If this parameter is NULL, the RC Manager replaces it with a
pointer to the global RC structure, then calls the recognizer associated with the global RC. If lprc is
not NULL, the RC Manager calls the recognizer identified by the hrec member of the RC structure.

hpndt

Handle to an HPENDATA object containing the ink to be trained. This parameter cannot be NULL.
lpsyv

Pointer to a string of SYV symbol values terminated by SYV_NULL. This parameter cannot be NULL.

Return Value
Returns TRUE if the ink described by the pen data could be trained; otherwise, it returns FALSE.

Comments
Applications call TrainInk with raw data accompanied by a correct interpretation of the data, so that the
recognizer can improve subsequent recognition. A second, more complex training function for version 1.0
recognizers is provided by TrainContext.

TrainInk is called by an application to access the TrainInkInternal function in the recognizer library. A
private 1.0 recognizer must export both TrainInkInternal and TrainContextInternal, but the functions can
simply return FALSE if the recognizer does not support this type of training.

TrainInk provides the lowest level of basic shape training. It requests the recognizer to assign the
meaning in lpsyv to the ink in hpndt. The recognizer should interpret the ink to meet that request.

In the most common case, lpsyv points to a single character, and the recognizer will train a new shape
based on the ink and that character. In other cases, multiple SYV symbol values can be passed,
indicating that the ink represents multiple characters. The recognizer must decide whether to simply add a
new shape with a meaning based on multiple SYV symbol values or to segment the ink into separate
shapes for each SYV.

An application should check whether a recognizer supports training by calling ConfigRecognizer with the
WCR_TRAIN subfunction.

The trainer does not display an error message if TrainInk or TrainContext returns FALSE. Error
messages that occur when training fails must be handled by the recognizer.

See Also

ConfigRecognizer, TrainContext, TrainHREC, SYV_

TrimPenData       

2.0

Removes selected data from an HPENDATA object.

HPENDATA TrimPenData(HPENDATA hpndt, DWORD dwTrimOptions, DWORD dwReserved)

Parameters
hpndt

Handle to the HPENDATA object.
dwTrimOptions

The following option flags are listed in the order in which the trimming operations are performed. For
example, OEM data is removed (TPD_OEMDATA) before duplicate points (TPD_COLLINEAR).

Constant Description
TPD_RECALCSIZE Recalculate size of pen data and

reallocate if smaller.
TPD_UPPOINTS Remove pen-up strokes from the

HPENDATA object.
PHW_PRESSURE Remove OEM pressure information.
PHW_HEIGHT Remove OEM height information.
PHW_ANGLEXY Remove OEM XY-angle information.
PHW_ANGLEZ Remove OEM Z-angle information.
PHW_BARRELROTATIO
N

Remove OEM barrel rotation
information.

PHW_OEMSPECIFIC Remove OEM-specific value
information.

PHW_PDK Remove per-point Pen Driver Kit
(PDK_) information.

TPD_PHW Remove all OEM and PDK information,
but not stroke tick or user data.

TPD_OEMDATA Remove all OEM values and PDK data.
TPD_PENINFO Remove PENINFO structure from

header. Note that any OEM information
present is discarded.

TPD_COLLINEAR Remove collinear and duplicate
(coincident) points. There may not be
any OEM data.

TPD_USER Remove per-stroke user information.
TPD_TIME Remove per-stroke timing information.
TPD_EMPTYSTROKES Remove all strokes with 0 points.
TPD_EVERYTHING Remove everything possible except

pen-down strokes. This includes both
TPD_ and PHW_ flags.

dwReserved

Must be 0.

Return Value
Returns PDR_OK if successful; otherwise, it returns one of the following negative values:

Constant Description
PDR_COMPRESSED The pen data was compressed.
PDR_ERROR An unspecified memory error occurred.
PDR_MEMERR Memory error.
PDR_OEMDATAERR The pen data does not have specific

pressure or height (PHW_) information.
Thus, the specified PHW_ data could not be
selectively trimmed. Use TPD_OEMDATA to
remove all OEM information.

PDR_PNDTERR Invalid pen data.
PDR_VERSIONERR A version 1.0 pen data object could not be

converted to the 2.0 format.

Comments
TrimPenData supplements the capabilities of CompressPenData. Together, these two functions replace
the version 1.0 Pen API function CompactPenData, which is supported for compatibility only.

The data that hpndt points to must not be compressed. If it is, TrimPenData simply retrieves the original
(untrimmed) pen data.

See Also
CompactPenData, CompressPenData, PDK_

UnhookResultsHookHREC       

2.0

Unhooks a recognizer result hook set with the SetResultsHookHREC function.

int UnhookResultsHookHREC(HREC hrec, HRECHOOK hHook)

Parameters
hrec

Module handle of the recognizer library. If this value is NULL, the system default recognizer is used.
hHook

Handle of the hook function.

Return Value
Returns HRCR_OK if successful; otherwise, returns one of the following negative values:

Constant Description
HRCR_ERROR Invalid parameter or other error.
HRCR_MEMERR Insufficient memory.

See Also
ResultsHookHREC, SetResultsHookHREC

UninstallRecognizer       

1.0 2.0

Unloads a recognizer previously installed with InstallRecognizer.

void UninstallRecognizer(HREC hrec)

Parameters
hrec

Recognizer handle.

Return Value
This function does not return a value.

Comments
Windows maintains a use count for all installed recognizers and doesn't unload a recognizer until the last
remaining client application has called UninstallRecognizer. For every call an application makes to
InstallRecognizer, it must must make a matching call to UninstallRecognizer.

Before unloading a recognizer library, the system calls the recognizer's ConfigRecognizer function with
the subfunction WCR_CLOSERECOGNIZER.

It is not necessary to uninstall the default recognizer; an application must uninstall all recognizers that it
explicitly loads.

See Also
InstallRecognizer, ConfigHREC

UpdatePenInfo       

1.0 2.0

Notifies the RC Manager that a PENINFO value has changed. This function is called by pen drivers
compatible with version 1.0 of the Pen API.

Note This function is provided only for compatibility with version 1.0 of the Pen API and will not be
supported in future versions.

void UpdatePenInfo(LPPENINFO lppeninfo)

Parameters
lppeninfo

Address of a PENINFO structure containing the new information.

Return Value
This function does not return a value.

Comments
A PENINFO value may change when the user alters the driver parameters in the configuration dialog box.
When this happens, the pen driver must call UpdatePenInfo to notify the RC Manager of the change.

See Also
PENINFO

WriteHWL       

2.0

Writes a word list to a file.

int WriteHWL(HWL hwl, HFILE hfile)

Parameters
hwl

Handle to a word list.
hfile

A handle to a file previously opened for writing.

Return Value
Returns HRCR_OK if successful; otherwise, returns one of the following negative values:

Constant Description
HRCR_ERROR Invalid parameter, or file or other error.
HRCR_MEMERR Insufficient memory.

Comments
The words are saved as ANSI text, one word per line, followed by a carriage return and linefeed. The file
must already exist and be open for writing. An application can append to the file by positioning the file
pointer at the end before calling WriteHWL. In this context, a word can represent a phrase and contain
spaces or other noncharacters, such as "New York" and "ne're-do-well."

For a description of word lists and how a recognizer uses them, see "Configuring the HRC" in Chapter 5,
"The Recognition Process."

See Also
CreateHWL, ReadHWL

Pen Application Programming
Interface Structures

This chapter describes in alphabetical order the structures defined by the Pen Application Programming
Interface (API). Each entry includes the structure typedef definition, descriptions of the structure
members, and cross-references where appropriate. The entry heading identifies the Pen API version,
such as 1.0 or 2.0, that supports the structure.

ABSTIME       

2.0

Absolute time structure.

typedef struct {
DWORD sec;
UINT ms;

} ABSTIME;

Members

sec

Number of seconds since 12:00 A.M. of January 1, 1970, as returned by the C run time library time
function.

ms

Additional offset in milliseconds. This member can be any value from 0 through 999.

See Also
GetStrokeAttributes, SetStrokeAttributes, INTERVAL

ANIMATEINFO       

2.0

Animation information used by the DrawPenDataEx function for animation control.

typedef struct {
DWORD cbSize;
UINT uSpeedPct;
UINT uPeriodCB;
UINT fuFlags;
LPARAM lParam;
DWORD dwReserved;

} ANIMATEINFO;

Members

cbSize

Size of this structure in bytes.
uSpeedPct

Drawing speed, expressed as a percentage of the user's entry speed. To redraw pen data at the
same speed at which it was created, this value should be set to 100. A value of 0 halts drawing.
Setting uSpeedPct to 0 is valid only if the lpfnAnimateCB parameter of DrawPenDataEx is defined.
Otherwise, the drawing halts with no way to restart it. uSpeedPct can be changed by a call-back
function.

uPeriodCB

Callback period in milliseconds. Typical values are 1 (very fast), 250 (fast), 1000 (slow), or 0 (never).
Any value in uPeriodCB is ignored if the DrawPenDataEx argument lpfnAnimateCB is NULL.
uPeriodCB may also be AI_CBSTROKE, to indicate that the callback should occur after each stroke
is drawn.

fuFlags

Flags that control animation (can be 0). The AI_SKIPUPSTROKES option specifies that the time
taken to account for the points in the up strokes should be ignored. If this flag is 0, and if the value in
uSpeedPct is small enough, there will be a delay between pen-down strokes, reflecting the user's
inter-stroke delay during creation of the pen data.

lParam

Application value to pass to the callback function set up by the lpfnAnimateCB argument of
DrawPenDataEx.

dwReserved

Must be 0.

Comments
Before using ANIMATEINFO, an application must initialize cbSize with sizeof(ANIMATEINFO).

See Also
AnimateProc, DrawPenDataEx

BOXEDITINFO       

2.0

Size information for boxed edit control.

typedef struct {
int cxBox;
int cyBox;
int cxBase;
int cyBase;
int cyMid;
BOXLAYOUT boxlayout;
UINT wFlags;
BYTE szFaceName[BEI_FACESIZE];
UINT wFontHeight;
UINT rgwReserved[8];

} BOXEDITINFO;

Members

cxBox

Width of a single box.
cyBox

Height of a single box.
cxBase

In-box x-margin to guideline.
cyBase

In-box y-offset from top to baseline.
cyMid

Reserved for future use; must be set to 0.
boxlayout

BOXLAYOUT structure.
wFlags

Flags specifying boxed edit options. Currently, the only defined option is BEIF_BOXCROSS.
szFaceName[BEI_FACESIZE]

Font face name, where BEI_FACESIZE is defined as 32.
wFontHeight

Font height.
rgwReserved[8]

Reserved for future use; must be set to 0.

See Also

BOXLAYOUT

BOXLAYOUT       

1.0 2.0

Specifies some of the characteristics of a bedit control. The GUIDE and BOXEDITINFO structures
determine the rest. The HE_GETBOXLAYOUT and HE_SETBOXLAYOUT wParam values of the
WM_PENCTL message retrieve and set the BOXLAYOUT structure for a bedit control.

For more details, see the WM_PENCTL message.

typedef struct {
int cyCusp;
int cyEndCusp;
UINT style;
DWORD dwReserved1;
DWORD dwReserved2;
DWORD dwReserved3;

} BOXLAYOUT;

Members

cyCusp

Height of the box in pixels when BXS_RECT is specified; otherwise, height of the cusp in pixels (in
comb style).

cyEndCusp

Height of cusps, in pixels, at extreme ends.
style

Bitwise-OR combination of the following BXS_ flags:
Constant Description
BXS_NONE Default comb style.
BXS_RECT Rectangular boxes (instead of comb style).
BXS_BOXCROSS (Japanese version only.) Rectangular boxes

with a small cross at the center of each cell.
Note that any state set via this flag (or the
absence of it) may be overridden by the
user's selection of the BOXCROSS setting
in the Bedit Control Panel.

dwReserved1

Reserved; must be set to 0.
dwReserved2

Reserved; must be set to 0.
dwReserved3

Reserved; must be set to 0.

Comments

The following table lists the default values for the BOXLAYOUT structure.

Value Description
 cyCusp Equivalent in pixels of BXD_CUSPHEIGHT

dialog units.
cyEndCusp Equivalent in pixels of

BXD_ENDCUSPHEIGHT dialog units.
style Comb style.

Figure 11.1 shows the general layout of a boxed edit control. Some of the terms in the figure are
explained in the reference entry for the GUIDE structure. Figure 11.2 shows an individual cell from a
boxed edit control.

{ewc msdncd, EWGraphic, bsd23554 0 /a "SDK_1A.BMP"}

{ewc msdncd, EWGraphic, bsd23554 1 /a "SDK_1B.BMP"}

See Also
BOXEDITINFO, WM_PENCTL, GUIDE, BXD_

BOXRESULTS       

2.0

Contains box results for the GetBoxResultsHRC function.

typedef struct {
int indxBox;
HINKSET hinksetBox;
SYV rgSyv[1];

} BOXRESULTS;

Members

indxBox

Index of the box with respect to the GUIDE structure.
hinksetBox

An inkset representing the pen data that belongs to the box, if requested by the GetBoxResultsHRC
function. This member can be NULL.

rgSyv[1]

Variable-length array of alternative guesses made by the recognizer. The guesses are arranged in
descending order of confidence, so that the first alternative in the array is the most likely choice.

See Also
GetBoxResultsHRC, GUIDE

CALBSTRUCT       

1.0 2.0

Pen calibration information.

typedef struct {
int wOffsetX;
int wOffsetY;
int wDistinctWidth;
int wDistinctHeight;

} CALBSTRUCT;

Members

wOffsetX

Value in tablet units to add to x-coordinates for proper calibration.
wOffsetY

Value in tablet units to add to y-coordinates for proper calibration.
wDistinctWidth

Specifies the number of distinct x-coordinates the tablet can detect.
wDistinctHeight

Specifies the number of distinct y-coordinates the tablet can detect. The wDistinctWidth and
wDistinctHeight members have the same meanings and values as the identically-named members
in the PENINFO structure.

CTLINITBEDIT       

2.0

Initialization information for a boxed edit (bedit) control.

typedef struct {
DWORD cbSize;
HWND hwnd;
int id;
int wSizeCategory;
WORD wFlags;
DWORD dwReserved;

} CTLINITBEDIT;

Members

cbSize

Size of this structure in bytes.
hwnd

Handle of a boxed edit window.
id

Control identifier.
wSizeCategory

Size category, which can be one of the following BESC_ constants:
Constant Description
BESC_DEFAULT Use the default size parameters to

create the
boxed edit control. This results in the
same behavior as BESC_KANJIFIXED
for applications that have registered
themselves through the
use of the SetPenAppFlags function
with the RPI_KANJIFIXEDBEDIT flag.
For all other applications, it results in the
same behavior as
BESC_ROMANFIXED.

BESC_ROMANFIXED Comb-style bedit control with
dimensions indicated by BXD_
constants (in dialog units). Meant for use
with Roman characters.

BESC_KANJIFIXED (Japanese version only.) Box-style bedit
control with dimensions indicated by
BXDK_ constants (in dialog units).
Meant for use with kanji characters. This
value should be used by applications
that cannot handle user-defined box
sizes.

BESC_USERDEFINED A bedit control that can handle the box

size parameters defined by the user. For
further details, see the description for
PMSC_BEDITCHANGE in the reference
section for the WM_PENMISC
message.

wFlags

Flags that determine certain properties of the boxed edit control. This can be a combination of the
following values:

Constant Description
CIB_NOGDMSG (Not supported in Japanese

version.)
Do not display the garbage-
detection message box when
writing in the bedit control.

CIB_NOACTIONHANDLE Do not create action handles.
CIB_NOFLASHCURSOR Do not change the cursor if tap-

and-hold action is detected.
CIB_NOWRITING (Japanese version only.) Do not

allow pen input into the control.
Other methods of inputting text,
such as keyboard input or pasting
from the keyboard, are allowed.

dwReserved

Reserved, should be set to 0.

Comments
Before using CTLINITBEDIT, an application must initialize cbSize with sizeof(CTLINITBEDIT).

See Also
WM_CTLINIT

CTLINITHEDIT       

2.0

Initialization information for a handwriting edit (hedit) control.

typedef struct {
DWORD cbSize;
HWND hwnd;
int id;
DWORD dwFlags;
DWORD dwReserved;

} CTLINITHEDIT;

Members

cbSize

Size of this structure in bytes.
hwnd

Handle of boxed edit window.
id

Control identifier.
dwFlags

Flags that determine some properties of the hedit control. This can be a combination of the following
values:

Constant Description
CIH_NOGDMSG (Not supported in Japanese

version.) Do not put up the
garbage-detection message box
when writing in this hedit control.

CIH_NOACTIONHANDLE Do not create action handles for
this hedit control.

CIH_NOEDITTEXT Do not show the edit text, insert
text, or writing tool dialogs when
writing in this hedit control.

CIH_NOFLASHCURSOR Do not change the cursor while
doing tap-and-hold selection in this
hedit control.

dwReserved

Reserved, should be set to 0.

Comments
Before using CTLINITHEDIT, an application must initialize cbSize with sizeof(CTLINITHEDIT).

See Also

WM_CTLINIT

CTLINITIEDIT       

2.0

Specifies the initial settings and options of an ink edit (iedit) control. A pointer to this structure is passed to
the parent window of the control as the lParam parameter of the WM_CTLINIT message. This forms the
last step of the control's processing of the WM_CREATE message.

typedef struct {
DWORD cbSize;
HWND hwnd;
int id;
WORD ieb;
WORD iedo;
WORD iei;
WORD ien;
WORD ierec;
WORD ies;
WORD iesec;
HPENDATA hpndt;
WORD pdts;
HGDIOBJ hgdiobj;
HPEN hpenGrid;
POINT ptOrgGrid;
WORD wVGrid;
WORD wHGrid;
DWORD dwApp;
DWORD dwReserved;

} CTLINITIEDIT;

Members

cbSize

Size of this structure in bytes.
hwnd

Handle to an ink edit window.
id

Control identifier.
ieb

Background IEB_ bit values (see IE_SETBKGND).
iedo

Draw options IEDO_ bit values (see IE_SETDRAWOPTS).
iei

Ink input IEI_ bit values (see IE_SETINKINPUT).
ien

Notification IEN_ bit values (see IE_SETNOTIFY).
ierec

Recognition IEREC_ bit values (see IE_SETRECOG).
ies

Style IES_ bit values (see IE_GETSTYLE).
iesec

Security IESEC_ bit values (see IE_SETSECURITY).
hpndt

Initial pen data.
pdts

Initial map mode.
hgdiobj

Brush or bitmap, depending on background bits option in ieb.
hpenGrid

Pen to use in drawing grid.
ptOrgGrid

Point of origin for the grid lines.
wVGrid

Vertical grid line spacing.
wHGrid

Horizontal grid line spacing.
dwApp

Application data.
dwReserved

Reserved.

Comments
Before using CTLINITIEDIT, an application must initialize cbSize with sizeof(CTLINITIEDIT).

See Also
IE_SETBKGND, IE_SETDRAWOPTS, IE_SETNOTIFY, IE_SETRECOG, IE_SETSECURITY,
IE_GETSTYLE, IE_SETDRAWOPTS, WM_CTLINIT

CWX       

2.0

Specifies optional parameters for the CorrectWritingEx function. (Japanese version only.)

typedef struct {
DWORD cbSize;
WORD wApplyFlags;
HWND hwndText;
HRC hrc;
char szCaption[CBCAPTIONCWX];
DWORD dwEditStyle;
DWORD dwSel;
DWORD dwFlags;
WORD ixkb;
WORD rgState[CKBCWX];
POINT ptUL;
SIZE sizeHW;

} CWX;

Members

cbSize

Size of this structure in bytes. This field must be initialized to sizeof(CWX).
wApplyFlags

Options to specify which members of this structure are to be used to override the most-recently-used
values provided by default; not all fields qualify. If this value is 0, the most-recently-used settings will
be shown; otherwise, this value can be a combination of the following values:

Constant Description
CWXA_CONTEXT Use the dwFlags member to specify

context.
CWXA_KBD Use the ixkb member to specify a

keyboard.
CWXA_STATE Apply the states provided in the rgState

array.
CWXA_PTUL Move the dialog box upper corner to the

screen position specified by the ptUL
member.

CWXA_SIZE Use the window size specified by the
sizeHW member while using the
handwriting recognition tab.

CWXA_NOUPDATEMR
U

Do not update the registry with the last
state of the correction dialog. This
causes any changes made to the
position and state of the Data Input
Window to be discarded. This has no
effect on user changes to the text,
however.

hwndText

Text window to which to send WM_GETTEXT and WM_SETTEXT messages. If this is NULL, the
owner of the Correct Writing dialog box will be used.

hrc

Handle to a recognition context. If this is NULL, a WM_PENMISC message with the wParam
parameter of PMSC_GETHRC will be sent to the owner window to get a recognition context. If that
too is NULL, then a default context will be used. The system will destroy its copy of hrc before the call
returns.

szCaption[CBCAPTIONCWX]

A null-terminated array of characters to be used for a dialog caption. If this string has 0 length, then
the default caption "Edit Text" will be used. The maximum length of caption allowed is specified by the
CBCAPTIONCWX constant.

dwEditStyle

Style to use for the Data Input Window's edit control. By default this is ES_LEFT. If this style includes
ES_MULTILINE, entry of Return and Tab characters is allowed; otherwise, they are not allowed. In
any case, the style of the actual edit control will look like a multiline edit control.

dwSel

Specifies the selection. The low-order word (LOWORD) is the start position and the high-order word
(HIWORD) is the end position. The default values are 0 for start and 0xFFFF for end, to select all text.

dwFlags

Specifies context flags, provided that the CWXA_CONTEXT bit is set in the wApplyFlags member;
otherwise, the most-recently-used context flags are used and this field is ignored. On return, this field
contains the updated flags. The flags may be CWX_DEFAULT (0), or a bitwise-OR combination of the
following constant values:

Constant Description
CWX_TOPMOST Specifies that the dialog window is to be a

topmost window. The window is not
topmost by default.

CWX_NOTOOLTIPS Disables showing tool tips for graphical
buttons. They are shown by default.

CWX_JPERIOD Specifies that the Japanese period is to be
used on some keys on the Data Input
Window keypads. The English period is
used by default.

CWX_JCOMMA Specifies that the Japanese comma is to
be used on some keys on the Data Input
Window keypads. The English comma is
used by default.

CWX_DEFAULT Zero; none of the above flags are set.

ixkb

Specifies which Data Input Window keyboard, or handwriting input, is to be used first, provided that
the CWXA_KBD bit is set in the wApplyFlags member; otherwise, the most-recently use keyboard is
used and this field is ignored. On return, this field contains the updated keyboard identifier. This may
be one of the following values:

Constant Description

CWXK_HW Handwriting, not keyboard, input. If this
value is specified, most of the dialog will be
available for handwriting input, and the
dialog will be sizable.

CWXK_50 50-On keyboard.
CWXK_QWERTY QWERTY keyboard, including Hiragana,

Katakana, and Romaji-to-Kana conversion
alternative states.

CWXK_ROMAJI Condensed Romaji-to-Kana keyboard,
similar to some pocket computers.

CWXK_NUM Numeric and Telephone keyboard.
CWXK_KANJI Kanji keyboard, which provides a method of

specifying a Kanji character based on its
strokes.

CWXK_CODE Kanji Code Finder keyboard, which allows
the lookup of a Kanji character based on its
JIS, Shift-JIS, or Kuten code value.

CWXK_YOMI Kanji character finder based on the sound,
or "reading" (Yomi) of the character.

rgState[CKBCWX]

An array of keyboard states with which to initialize the CKBCWX number of keyboards, provided that
the CWXA_STATE bit is set in the wApplyFlags member; otherwise, the most-recently-used states
are used and this member is ignored. On return, this member contains the updated states. Each
element of the array may be CWXKS_DEFAULT (0, which is equivalent to CWXKS_HAN +
CWXKS_ROMA), or a bitwise-OR combination of the following constants:

Constant Description
CWXKS_CAPS Set CAPSLOCK state on QWERTY

keyboard.
CWXKS_HAN Set Hankaku (single-byte) state.
CWXKS_ZEN Set Zenkaku (double-byte) state.
CWXKS_ROMA Set Romaji characters state.
CWXKS_HIRA Set Hiragana characters state.
CWXKS_KATA Set Katakana characters state.

ptUL

Specifies the upper-left corner of the dialog in screen coordinates, provided that the CWXA_PTUL bit
is set in the wApplyFlags member; otherwise, the most-recently-used position is used and this
member is ignored. On return, this member contains the updated screen position of the upper-left
corner.

sizeHW

Specifies the size of the dialog when it is in handwriting input mode, provided that the CWXA_SIZE bit
is set in the wApplyFlags member; otherwise, the most-recently-used size is used and this field is
ignored. On return, this field contains the updated size.

Comments
Note that even if some bits are not set in wApplyFlags, the corresponding structure members are still
updated with the last-used values on return.

See Also
CorrectWritingEx

GUIDE       

1.0 2.0

Specifies the characteristics of any guidelines used in the writing area.

typedef struct {
int xOrigin;
int yOrigin;
int cxBox;
int cyBox;
int cxBase;
int cyBase;
int cHorzBox;
int cVertBox;
int cyMid;

} GUIDE;

Members

xOrigin

Position of left edge of the first box in screen coordinates.
yOrigin

Position of top edge of the first box in screen coordinates.
cxBox

Width of each box in screen pixels.
cyBox

Height of each box in screen pixels.
cxBase

Margin to the guideline. This is one-half the distance in pixels between adjacent boxes.
cyBase

Vertical distance in pixels from the baseline to the top of the box.
cHorzBox

Number of columns of boxes.
cVertBox

Number of rows of boxes.
cyMid

Distance in pixels from the baseline to the midline, or 0 if midline is not present.

Comments
If the application has drawn guidelines on the screen on which the user is expected to write, the
application should set the values in the GUIDE structure to inform the recognizer. The GUIDE structure is
for the recognizer's use only. Setting the GUIDE structure does not by itself draw any visual clues on the
display. It is the responsibility of the application or the control to draw the visual clues. The appearance of

a boxed edit control is determined by the BOXLAYOUT and GUIDE structures together.

The xOrigin and yOrigin members are screen coordinates of the top-left corner of the area to write in.
The cyBox and cxBox members are the height and width of the individual boxes to write in. The
cHorzBox and cVertBox members specify the number of columns and rows. cyBase specifies a
baseline within the box. (Setting cyBase to 0 indicates no baseline.) The cxBase member gives a
horizontal displacement of the edge of the guideline from the edge of the box where writing is expected to
start.

If only horizontal lines are present, set cxBox to 0. In this case, only yOrigin, cyBox, cyBase, and cyMid
are valid. A default GUIDE structure has all elements set to 0.

To establish a guide, initialize a GUIDE structure and set it into an HRC with the SetGuideHRC function.
This also applies to a standard bedit, as demonstrated in "The bedit Control" in Chapter 3.

For boxed input, the GetBoxMappingHRCRESULT function returns an index to the box containing the
requested input character. This is numbered in zero-based row-major order. In Figure 11.3 below, for
example, the "h" character is in box 12.

{ewc msdncd, EWGraphic, bsd23554 2 /a "SDK_2.BMP"}

{ewc msdncd, EWGraphic, bsd23554 3 /a "SDK_3.BMP"}

For best recognition results, the pair-wise ratios of cxBox, cyBox, and cyBase should be similar to the
default ratios.

See Also
SetGuideHRC, BOXLAYOUT, BXD_

INKINGINFO       

2.0

Provides information about where and how the system should display ink.

typedef struct {
DWORD cbSize;
UINT wFlags;
PENTIP tip;
RECT rectClip;
RECT rectInkStop;
HRGN hrgnClip;
HRGN hrgnInkStop;

} INKINGINFO;

Members

cbSize

Size of this structure in bytes.
wFlags

A bitwise-OR combination of the following PII_ flags:
Constant Description
PII_INKPENTIP Use tip for pen characteristics.
PII_INKCLIPRECT Clip ink using rectClip.
PII_INKSTOPRECT Terminate inking on a pen-down event

inside rectInkStop.
PII_INKCLIPRGN Clip ink using hrgnClip. If hrgnClip is

set,
any value in rectClip is disregarded.

PII_INKSTOPRGN Terminate inking on a pen-down event
inside hrgnInkStop.

PII_SAVEBACKGROUND Save the background that is being
inked on.
The saved background is restored
when the current input session
terminates.

PII_CLIPSTOP Directs Windows to stop inking if the
pen
goes down outside rectClip or
hrgnClip, if either have been set.

tip

A PENTIP structure defining the pen type, size, and color.
rectClip

Clipping rectangle for the ink. Setting rectClip to {-32767, -32767, 32767, 32767} is equivalent to
having no clipping region.

rectInkStop

Rectangle in which a pen-down event stops inking. Setting rectInkStop to empty is equivalent to not
having an ink stop region.

hrgnClip

Clipping region for the ink. Setting hrgnClip to NULL is equivalent to not having a clipping region.
hrgnInkStop

Region in which a pen-down event stops inking. Setting hrgnInkStop to NULL is equivalent to not
having an ink stop region.

Comments
All areas are in screen coordinates.

The wFlags member specifies which of the other members contain valid information. For example, if
PII_INKCLIPRECT is set in wFlags, the rectClip member specifies the clipping rectangle. Otherwise, a
default value is used.

Before using INKINGINFO, an application must initialize cbSize with sizeof(INKINGINFO).

See Also
PENTIP, StartInking, WM_PENEVENT

INPPARAMS       

2.0

Describes a set of targets.

typedef struct {
DWORD cbSize;
DWORD dwFlags;
HPENDATA hpndt;
TARGET target;

} INPPARAMS;

Members

cbSize

Size of this structure in bytes.
dwFlags

Reserved for future use; must be 0.
hpndt

Handle to a pen data object.
target

A TARGET structure where input is directed.

Comments
Before using INPPARAMS, an application must initialize cbSize with sizeof(INPPARAMS).

See Also
TARGET

INTERVAL       

2.0

Interval structure for inksets.

typedef struct {
ABSTIME atBegin;
ABSTIME atEnd;

} INTERVAL;

Members

atBegin

Beginning of 1-millisecond granularity interval.
atEnd

Time at 1 millisecond past end of interval.

See Also
ABSTIME

OEMPENINFO       

1.0 2.0

Structure containing original equipment manufacturer (OEM) hardware information for the pen or tablet.

typedef struct {
UINT wPdt;
UINT wValueMax;
UINT wDistinct;

} OEMPENINFO;
Members

wPdt

A combination of PDT_ values.
wValueMax

The largest value returned by the device.
wDistinct

The number of distinct readings possible.

Comments
The OEMPENINFO structure contains a description of the additional OEM information that the hardware
can generate. It is a component of the PENINFO structure.

Besides capturing the x- and y- coordinates of the pen movement, a pen device has the option of
providing a number of other types of input data, such as pen pressure, height of the pen tip above the
tablet surface, angle of the pen, and so on. A pen driver can capture up to MAXOEMDATAWORDS types
of data, where MAXOEMDATAWORDS is defined as six. An application can access the OEM data
through the GetPenInput function. A recognizer can receive OEM data from an application through the
AddPenInputHRC function. It is the up to the application whether to send this data or not.

Each pen event generates a packet of information from the pen driver that contains the current pen
position and, optionally, other types of OEM information. The cbOemData member of the PENINFO
structure specifies the width of the optional OEM data in bytes. Each type of data is one word wide. The
type of data in the nth word of the OEM data packet is given by the nth element of the rgoempeninfo
member (an array of OEMPENINFO structures) in the PENINFO structure.

For the wPdt member, PDT_NULL indicates no data. Values greater than PDT_OEMSPECIFIC are
reserved for private use by drivers for data types not currently defined as standard. The wValueMax
member contains the largest variable size the device can return for that data type. The wDistinct member
is the number of distinct readings the device can take between 0 and wValueMax.

For a list of values for the wPdt member, see the entry for PDT_ values in Chapter 13, "Pen Application
Programming Interface Constants."

Example
As an example of how to use OEMPENINFO, consider a device that can sense both the height above the
tablet surface and the Z-angle of the pen. Assume the device can sense 256 levels of height in a range
from 0 to 10 centimeters and has a resolution of 1 degree on the angle of the pen. The two additional
words of OEM information occupy 4 bytes, so the cbOemData and rgoempeninfo members of PENINFO
look like this:

peninfo.cbOemData = 4
peninfo.rgoempeninfo[MAXOEMDATAWORDS] = {

{PDT_HEIGHT,
1000, 256},

{PDT_ANGLEZ,
1800, 180},

{PDT NULL, 0, 0},
{PDT_NULL, 0, 0},
{PDT_NULL, 0, 0},
{PDT_NULL, 0,

0} };

This optional information is saved by the pen driver in the same manner as the x- and y- coordinate data.
There must be a one-to-one correspondence between the OEM event data and the coordinate data.

Figure 11.5 shows the pen in a position where both the Xy-angle and Z-angle are approximately 45
degrees.

{ewc msdncd, EWGraphic, bsd23554 4 /a "SDK_4.BMP"}

See Also
PENINFO

OEM_PENPACKET
2.0

A pen packet used by Pen API, version 2.0, consisting of the information received from the pen device for
a single sample. For a definition of pen packet, see SetPenHook.

typedef struct {
UINT wTabletX;
UINT wTabletY;
UINT wPDK;
UINT rgwOemData[MAXOEMDATAWORDS];
DWORD dwTime;

} PENPACKET;

Members

wTabletX

The x-dimension in raw tablet coordinates.
wTabletY

The y-dimension in raw tablet coordinates.
wPDK

Pen hardware state bits, expressed as a combination of PDK_ values.
rgwOemData[MAXOEMDATAWORDS]

Array of OEM-specific data. MAXOEMDATAWORDS is defined as 6.
dwTime

Time stamp indicating when the pen packet originated.

Comments
A pen packet is the basic unit of communication between the pen driver and Windows. A pen packet
contains all of the information about a single logical event: x-y coordinate position, button states, and any
optional information such as pressure or barrel rotation. Several physical events¾that is, interrupts¾may
be needed to construct a single logical event.

The rgwOemData member contains the data relating to the OEM hardware, such as pen pressure, angle,
and so forth.

See Also
SetPenHookCallback, OEMPENINFO, PENPACKET

PCMINFO       

2.0

Pen collection mode information. All regions and rectangles are in screen coordinates. Time-out values
are in milliseconds.

typedef struct {
DWORD cbSize;
DWORD dwPcm;
RECT rectBound;
RECT rectExclude;
HRGN hrgnBound;
HRGN hrgnExclude;
DWORD dwTimeout;

} PCMINFO;

Members

cbSize

Size of this structure in bytes.
dwPcm

A combination of PCM_ flags specifying options for pen collection.
rectBound

Bounding rectangle for pen collection.
rectExclude

Exclusion rectangle for pen collection.
hrgnBound

Bounding region for pen collection.
hrgnExclude

Exclusion region for pen collection.
dwTimeout

Time-out before terminating pen collection.

Comments
Before using PCMINFO, an application must initialize cbSize with sizeof(PCMINFO).

See Also
StartPenInput, WM_PENEVENT, PCM_

PDEVENT       

2.0

Provides details of the pointing-device event that is the subject of an IN_PDEVENT notification. A
pointing-device event can be a pen tap, mouse double-click, and so on. This structure is returned by the
IE_GETPDEVENT message.

typedef struct {
DWORD cbSize;
HWND hwnd;
UINT wm;
WPARAM wParam;
LPARAM lParam;
POINT pt;
BOOL fPen;
LONG lExInfo;
DWORD dwReserved;

} PDEVENT;

Members

cbSize

Size of this structure in bytes.
hwnd

Handle to ink edit window.
wm

Window WM_ message.
wParam

wParam of event.
lParam

lParam of event.
pt

Event point in ink edit client coordinates.
fPen

TRUE if pen event, FALSE if mouse event.
lExInfo

Windows GetMessageExtraInfo function return value.
dwReserved

Reserved.

Comments
Before using PDEVENT, an application must initialize cbSize with sizeof(PDEVENT).

For descriptions of the WM_ messages that pertain to pen-based computing, refer to Chapter 12, "Pen
Application Programming Interface Messages."

See Also
IE_GETPDEVENT, IN_PDEVENT

PENDATAHEADER       

1.0 2.0

Main header of an HPENDATA memory block.

typedef struct {
UINT wVersion;
UINT cbSizeUsed;
UINT cStrokes;
UINT cPnt;
UINT cPntStrokeMax;
RECT rectBound;
UINT wPndts;
int nInkWidth;
DWORD rgbInk;

} PENDATAHEADER;

Members

wVersion

Pen data format version. Same as the version number for the Pen API, which is currently 0x0002.
Calling GetPenDataAttributes with the GPA_VERSION argument retrieves the value of wVersion.

cbSizeUsed

Size (in bytes) of pen data memory block.
cStrokes

Number of strokes in the block. (Each pen-down and pen-up sequence counts as a single stroke.)
cPnt

Count of all points in the block. Calling GetPenDataAttributes with the GPA_POINTS argument
retrieves the value of cPnt.

cPntStrokeMax

Length (in points) of longest stroke. Calling GetPenDataAttributes with the GPA_MAXLEN argument
retrieves the value of cPntStrokeMax.

rectBound

Bounding rectangle of all pen-down points.
wPndts

Data scaling metric value, expressed as a bitwise-OR combination of PDTS_ values.
nInkWidth

Ink width, in pixels.
rgbInk

Ink color.

Comments
The PENDATAHEADER structure describes the contents of an HPENDATA memory block. Use the

GetPenDataInfo or GetPenDataAttributes function to retrieve information from a PENDATAHEADER
structure.

For a description of the HPENDATA memory block, see "The HPENDATA Object" in Chapter 4, "The
Inking Process."

For a list of data scaling values, refer to the entry for PDTS_ values in Chapter 13, "Pen Application
Programming Interface Constants."

See Also
GetPenDataInfo, GetPenDataAttributes, PDTS_

PENINFO       

1.0 2.0

Contains dimensions, sampling rate, and other information about the pen or tablet hardware.

typedef struct {
UINT cxRawWidth;
UINT cyRawHeight;
UINT wDistinctWidth;
UINT wDistinctHeight;
int nSamplingRate;
int nSamplingDist;
LONG lPdc;
int cPens;
int cbOemData;
OEMPENINFO rgoempeninfo[MAXOEMDATAWORDS];
UINT rgwReserved[7];
UINT fuOEM;

} PENINFO;
Members

cxRawWidth

Width of tablet in thousandths of an inch. Also specifies the maximum tablet x-coordinate.
cyRawHeight

Height of tablet in thousandths of an inch. Also specifies the maximum tablet y-coordinate.
wDistinctWidth

Number of distinct x-coordinates the hardware can detect.
wDistinctHeight

Number of distinct y-coordinates the hardware can detect. Together, the wDistinctWidth and
wDistinctHeight members express the x-y resolution of the tablet. For example, if a tablet is 8 inches
wide and has a resolution of 1/500 of an inch, cxRawWidth is 8000 and wDistinctWidth is 4000
because the tablet hardware can return 4000 distinct x-order values ranging from 0 to 8000.

nSamplingRate

Specifies the number of samples per second the tablet can return. This value may be less than the
number of hardware interrupts per second the tablet generates because several interrupts may be
required to create one pen packet sample. See the "Comments" section below for information on
adjusting the sampling rate.

nSamplingDist

Specifies the distance in distinct tablet units a pen must travel before a new pen event is generated.
See the "Comments" section below for information on adjusting the sampling distance.

lPdc

Pen-device capabilities, expressed as a bitwise-OR combination of the PDC_ flags.
cPens

Number of pens the tablet can simultaneously support.
cbOemData

Specifies the width, in bytes, of the additional OEM data passed in each pen packet. For example, if a
tablet can detect pressure and Z-angle information, this information occupies two additional words of
OEM data, so cbOemData is 4.

rgoempeninfo[MAXOEMDATAWORDS]

An array of OEMPENINFO structures. Each structure describes one word of additional OEM data
contained in each pen packet. (MAXOEMDATAWORDS is defined as 6.)

rgwReserved[7]

Reserved for internal use.
fuOEM

Flags representing which OEM data to report in rgoempeninfo; used by applications to determine the
OEM data used in an HPENDATA object. This member is set and used internally by the pen services
and should never be modified by an application. This member is a bitwise-OR combination of the
following values:

Constant Description
PHW_ALL Report all available OEM data.
PHW_PRESSURE Report pressure if available.
PHW_HEIGHT Report height if available.
PHW_ANGLEXY Report Xy-angle if available.
PHW_ANGLEZ Report Z-angle if available.
PHW_BARRELROTATION Report barrel rotation if

available.
PHW_OEMSPECIFIC Report OEM-specific value if

available.
 PHW_PDK Report per-point PDK_ values.

Comments
The DRV_GetPenInfo pen driver message fills a PENINFO structure with the current device parameters.
DRV_GetPenInfo returns FALSE if a tablet is not present. If this occurs, the PENINFO structure that the
message's lParam1 points to is not valid. Note that an application should retrieve tablet information with
the GetPenDataInfo and GetPenDataAttributes functions, rather than accessing the pen driver directly.

An application can also adjust the tablet sampling rate and sampling distance by sending the
DRV_SetSamplingRate or DRV_SetSamplingDist messages to the device driver. For more information,
see Appendix E, "Accessing the Pen Device Driver."

For a list of state bits for the pen driver, refer to the entry for PDK_ values in Chapter 13, "Pen Application
Programming Interface Constants."

See Also
CreatePenDataEx, GetPenDataInfo, TrimPenData, UpdatePenInfo, OEMPENINFO

PENPACKET       

1.0 2.0

A pen packet used by Pen Windows, version 1.0, consisting of the information received from the pen
device for a single sample. For a definition of pen packet, see SetPenHook.

typedef struct {
UINT wTabletX;
UINT wTabletY;
UINT wPDK;
UINT rgwOemData[MAXOEMDATAWORDS];

} PENPACKET;

Members

wTabletX

The x-dimension in raw tablet coordinates.
wTabletY

The y-dimension in raw tablet coordinates.
wPDK

Pen hardware state bits, expressed as a combination of PDK_ values.
rgwOemData[MAXOEMDATAWORDS]

Array of OEM-specific data. MAXOEMDATAWORDS is defined as 6.

Comments
A pen packet is the basic unit of communication between the pen driver and Windows. A pen packet
contains all of the information about a single logical event: x-y coordinate position, button states, and any
optional information such as pressure or barrel rotation. Several physical events¾that is, interrupts¾may
be needed to construct a single logical event.

The rgwOemData member contains the real-time values associated with the pen data types described in
the entry for the OEMPENINFO structure.

See Also
SetPenHookCallback, OEMPENINFO, OEM_PENPACKET

PENTIP       

2.0

Pen tip characteristics.

typedef struct {
DWORD cbSize;
BYTE btype;
BYTE bwidth;
BYTE bheight;
BYTE bOpacity;
COLORREF rgb;
DWORD dwFlags;
DWORD dwReserved;

} PENTIP;

Members

cbSize

Size of this structure in bytes.
btype

Pen nib type. Types in the range 0 through 63 are reserved for predefined standard types. An
application can use values in the range 64 through 255.

bwidth

Pen nib width, in display device units (pixels).
bheight

Pen nib height, in display device units (pixels). In the current version of the Pen API, this member is
ignored.

bOpacity

Opacity of the ink, which corresponds to the JOT standard. bOpacity must have one of the following
values:

Constant Description
PENTIP_OPAQUE New ink overwrites any

existing ink.
PENTIP_HILITE New ink is visible but partly

transparent, possibly
interacting with underlying ink.

PENTIP_TRANSPARENT Ink is completely transparent.
There is no interaction with any
underlying ink.

rgb

RGB pen color.
dwFlags

Reserved.

dwReserved

Reserved; must be set to 0.

Comments
Before using PENTIP, an application must initialize cbSize with sizeof(PENTIP).

See Also
GetStrokeAttributes, SetStrokeAttributes, GetStrokeTableAttributes, SetStrokeTableAttributes,
GetPenMiscInfo, SetPenMiscInfo, INKINGINFO

RC       

1.0 2.0

Defines a recognition context (RC) for applications compatible with version 1.0 of the Pen API.
Applications that do not call the superseded functions Recognize or RecognizeData do not use the RC
structure. These applications instead use HRC objects, which render RC obsolete.

The RC structure is provided only for compatibility with version 1.0 of the Pen API and will
not be supported in future versions.

typedef struct {
HREC hrec;
HWND hwnd;
UINT wEventRef;
UINT wRcPreferences;
LONG lRcOptions;
RCYIELDPROC lpfnYield;
BYTE lpUser[cbRcUserMax];
UINT wCountry;
UINT wIntlPreferences;
char lpLanguage[cbRcLanguageMax];
LPDF rglpdf[MAXDICTIONARIES];
UINT wTryDictionary;
CL clErrorLevel;
ALC alc;
ALC alcPriority;
BYTE rgbfAlc[cbRcrgbfAlcMax];
UINT wResultMode;
UINT wTimeOut;
LONG lPcm;
RECT rectBound;
RECT rectExclude;
GUIDE guide;
UINT wRcOrient;
UINT wRcDirect;
int nInkWidth;
COLORREF rgbInk;
DWORD dwAppParam;
DWORD dwDictParam;
DWORD dwRecognizer;
UINT rgwReserved[cwRcReservedMax];

} RC;
Members

hrec

Handle of recognizer to use.
hwnd

Window to which results are sent.
wEventRef

Index into ink buffer.
wRcPreferences

Flags specifying preferences, described in "Comments" section.
lRcOptions

Recognition options, described in "Comments" section.
lpfnYield

Procedure called during processing of the Yield Windows function.
lpUser[cbRcUserMax]

Current writer.
wCountry

Country code.
wIntlPreferences

Flags for international preferences.
lpLanguage[cbRcLanguageMax]

Language strings.
rglpdf[MAXDICTIONARIES]

List of dictionary functions.
wTryDictionary

Maximum enumerations to search.
clErrorLevel

Level where recognizer should reject input.
alc

Enabled ALC_ alphabet codes.
alcPriority

Sets priority of the ALC_ codes.
rgbfAlc[cbRcrgbfAlcMax]

Bit field for enabled characters.
wResultMode

Result return mode specifying when to send (either as soon as possible or when complete). The
RRM_ codes are described in "Comments" section.

wTimeOut

Recognition time-out in milliseconds.
lPcm

Bitwise-OR combination of PCM_ flags for ending the recognition session.
rectBound

Bounding rectangle for inking. By default, the rectangle is in screen coordinates.
rectExclude

A pen-down event inside this rectangle terminates recognition.
guide

GUIDE structure that defines guidelines for recognizer.
wRcOrient

Orientation of writing with regard to the tablet.
wRcDirect

Direction of writing.
nInkWidth

Ink width of 1-15 pixels. A value of 0 prevents display of the ink.
rgbInk

Ink color.
dwAppParam

For application use.
dwDictParam

For application use; to be passed on to dictionaries.
dwRecognizer

For application use; to be passed on to recognizer.
rgwReserved[cwRcReservedMax]

Reserved.

Comments
The following paragraphs discuss the RC members, listed in the order in which they appear in the
preceding structure.

hrec
The hrec member is the handle of the recognizer to use. This value should be set to the value returned
by a previous call to InstallRecognizer, or to RC_WDEFAULT for the default recognizer.

If hrec is NULL, no recognizer is used. WM_RCRESULT messages are generated as with a real
recognizer, but the wResultsType member of RCRESULT is set to RCRT_NORECOG, and the hSyv
and lpsyv members are set to NULL. (For a list of other values in wResultsType, see the entry for
RCRT_ values in Chapter 13, "Pen Application Programming Interface Constants.")

hwnd
The hwnd member specifies the window to send recognition results to. This member cannot be NULL.
Also, the mouse capture is set to this window to clear the queue of pending mouse messages that were
meant for recognition.

wEventRef
The value for wEventRef indicates which tablet data to begin recognition with. The wEventRef member
is returned from the GetMessageExtraInfo function.

InitRC sets this member to RC_WDEFAULT. If Recognize is called during the processing of the
WM_LBUTTONDOWN message that initiates the input session, the application need take no other action.

Before an application starts recognition on some other Windows event, it should use
GetMessageExtraInfo to save the event reference of the appropriate mouse message and place this
value in wEventRef before calling Recognize.

This member is not used on calls to RecognizeData.

wRcPreferences
The wRcPreferences member specifies the user preferences as a combination of RCP_ constants.

lRcOptions
The lRcOptions member specifies various options for recognition. It is a bitwise-OR combination of
RCO_ constants.

lpfnYield
The lpfnYield member points to a callback function used by the recognizer before it yields. The
application sets this to NULL for no yield processing. Recognition can often take more than a few
seconds; therefore, a recognizer should periodically call the yield function to yield control to other
Windows tasks. The default yield function is:

BOOL FAR PASCAL StandardYieldFunction()
{

Yield();
return 1;

}

If Recognize or RecognizeData is called with lpfnYield set to RC_LDEFAULT, then the default yield
function is called. If the lpfnYield member is not NULL, the recognizer calls lpfnYield every time before it
yields.

lpUser

#define cbRcUserMax 32
BYTE lpUser[cbRcUserMax];

The lpUser member specifies the name of the current writer. The current writer is used to specify any
custom prototype sets that might be available to the recognizer. If the lpUser member is NULL, it means
that the recognizer should use the standard prototype set¾that is, the prototype set as it existed before it
was modified (through training, for example).

wCountry
The wCountry member contains the country code. The values for country code are the same as the
values used by the International item of the Control Panel for the iCountry member in the [intl] section of
the WIN.INI file.

wIntlPreferences
The wIntlPreferences member contains a combination of various RCIP_ flags. Currently, this member
can be only 0 or RCIP_ALLANSICHAR. If 0, only characters from the current language or languages are
enabled. If wIntlPreferences is RCIP_ALLANSICHAR, the entire ANSI character set is enabled.

lpLanguage

#define cbRcLanguageMax 44
char lpLanguage[cbRcLanguageMax]

The lpLanguage member is a list of language strings. Each string is null-terminated and the list ends with
a null string.

The set of values for each language string is the same as the set used by the International item of the
Control Panel for the sLanguage member in the [Intl] section of the WIN.INI file. These three-letter codes
are documented in the Microsoft Windows Software Development Kit.

A recognizer should implement recognition of the ANSI character set and then use this information during
recognition to limit a match to the appropriate subset. The lpLanguage member holds strictly optional
information; a recognizer may choose to ignore it. By definition, the character set implied by a language
string is the set of characters that can be generated from the country-specific keyboard without using the
ALT+numeric keypad combinations. It is still possible to enter ANSI characters outside the given language
through the use of the onscreen keyboard and ALT+numeric keypad combinations.

rglpdf

#define MAXDICTIONARIES 16
LPDF rglpdf[MAXDICTIONARIES]

The dictionary path member rglpdf specifies which dictionaries are called by the RC Manager to convert
symbol graphs into strings.

If rglpdf[0] is NULL, the NULL dictionary path is used. The NULL dictionary path indicates that the first
enumeration from the symbol graph is used as the best enumeration. The array of dictionary functions is
null-terminated. During recognition, the dictionary functions are called in the order in which they appear.
For more details, see the entry for the DictionarySearch function.

wTryDictionary
The wTryDictionary member specifies the maximum number of enumerations generated from the
symbol graph during dictionary processing on the results of recognition. The minimum number allowed is
1 and the maximum is 4096. The default value is 100.

clErrorLevel
Recognition accuracy is defined as the percentage of times the recognizer accurately assigns a symbol to
an input. There is no penalty or gain if the recognizer does not attempt a match and returns "unknown."
The value can range from 0 to 100.

There are situations in which a higher accuracy rating is preferable despite an increased number of
unknown results. For example, in a forms application, the Social Security field must be correctly
recognized. If the recognizer is unsure, it can get the application to prompt the user again for the input (or
a portion of it). At other times, it is preferable that the recognizer make a guess, no matter how wild, in
order to limit the number of unknown results. For example, while taking notes in a meeting, the user may
not care whether all of the results are transcribed perfectly.

The clErrorLevel member allows the application to signal its preference to the recognizer. Recognizers
should return the SYV_UNKNOWN symbol for any symbol having a confidence level below clErrorLevel.

alc
The alc member is used to define the enabled alphabet for any RC structure with ALC_ constants. Any of
the ALC_ constants can be combined together with a bitwise-OR operator to form the desired set of
characters.

The actual characters enabled depend on the language. For example, if the user has requested French
language support, the letter "è" is included in the lowercase alphabet. In the same way, "£" replaces "$" if
ALC_MONETARY is set in British systems. For a list of alphabet values, see the entry for ALC_ values in
Chapter 13, "Pen Application Programming Interface Constants."

Setting the RCIP_ALLANSICHAR flag in the wIntlPreferences member of the RC structure enables all
characters of the appropriate set regardless of the language setting.

A recognizer that recognizes characters other than ANSI can ignore this member. If you want an
application to pass character subset information to private non-ANSI recognizers, you can use the
dwRecognizer member.

A recognizer should not return a symbol value outside the specified subset. However, a recognizer does
not have to force a match to the subset; it can return SYV_UNKNOWN if a suitable match is not found.

alcPriority
The alcPriority member sets the priority of the ALC_ codes used to enable alphabets. It does this by
telling the recognizer in which order to list options in the symbol graph.

The alcPriority member uses the same ALC_ codes used in the alc member. The bits set in alcPriority
should be a subset of those set in alc. Bits set in alcPriority that are not also set in the alc member have
no effect.

A recognizer can recognize a glyph that belongs to more than one enabled ALC_ subset. For example, a
vertical stroke can be the letter "l" in the ALC_LCALPHA subset or the number "1" in the ALC_NUMERIC
subset. The alcPriority member specifies that the recognizer should first return those interpretations that
are in the subsets indicated in alcPriority. If no interpretations are in any of the alcPriority sets, or no
priority members are set, the recognizer returns all possibilities within the enabled sets.

For example, suppose the user writes a symbol that looks like either a "q" or a "9." The generated symbol
graph contains {q | 9 }. The alcPriority member determines the exact look of the symbol graph. If
alcPriority has the ALC_ALPHA bit set, the recognizer should return { q | 9 } in the symbol graph. If
alcPriority has the ALC_NUMERIC bit set, the recognizer should return { 9 | q } in the symbol graph.

Note that alcPriority does not affect the dictionary processing directly.

If ALC_USEBITMAP is set, the rgbfAlc member indicates which characters have priority.

rgbfAlc

#define cbRcrgbfAlcMax 32
BYTE rgbfAlc[cbRcrgbfAlcMax];

The rgbfAlc member is the bit field used for enabled characters. For more details, see the description of
ALC_ constants. If ALC_USEBITMAP is set, the 256-bit bit field in rgbfAlc is used to indicate which
characters from the ANSI character set are currently enabled. Character 0 is the low bit of the low-order
byte in the array. Characters thus indicated are connected by OR operators to any characters enabled
using the other ALC_ codes. A "1" set in a bit array indicates that the character is enabled.

As an example, to enable the "$" character, set the fifth bit of byte four like this:

rgbfAlc[4] |= 0x10

A recognizer that recognizes characters other than ANSI can ignore this member. If an application wants
to pass character subset information to private non-ANSI recognizers, it can use the dwRecognizer
member of the RC structure.

A set of macros, defined in PENWIN.H, simplifies user setting and testing the rgbfAlc bits for an RC
structure. The ANSI macros listed in the following table set (bit=1), clear (bit=0), or test (TRUE if bit==1,
else FALSE) the appropriate bits in lprc->rgbfAlc corresponding to the index i, which is the ANSI value to
use. The lprc is a pointer to the RC structure containing the rgbfAlc[] array.

Macro Description
 SetAlcBitAnsi(lprc, i) Sets the bit specified by i in

rgbfAlc of lprc to 1.
ResetAlcBitAnsi(lprc, i) Resets the bit specified by i in

rgbfAlc of lprc to 0.
IsAlcBitAnsi(lprc, i) Returns TRUE if the bit specified

by i in rgbfAlc of lprc is set.

Only the IsAlcBitAnsi macro returns a value (BOOL). The return values of the other macros are
undefined.

Setting bits in rgbfAlc[] also requires combining ALC_USEBITMAP by an OR operator with alc for the
bits to have meaning. The bits are used in addition to other alc settings. For example, adding
ALC_NUMERIC does not also set the bits in rgbfAlc that correspond to 0 through 9. Thus, to recognize
octal numbers (the set 0 to 7), use the following code:

RC rc;
int i;

rc.alc = ALC_USEBITMAP; // Note no ALC_NUMERIC
for (i = (int)'0'; i <= (int)'7'; i++)

SetAlcBitAnsi(&rc, i);

wResultMode
The wResultMode member specifies the timing and granularity of the results messages to be sent back
to the specified window. The following times are defined.

Constant Description
RRM_WORD The granularity is set at a word boundary. As

soon as the recognizer sees a word break, it
can send all symbols up to the point of the
word break.

RRM_NEWLINE The granularity is set at a new line. As soon
as the recognizer sees a line break, it sends
the result to that point.

RRM_COMPLETE When recognition is completed by one of the
methods (for example, time-out or barrel
button), the results message is sent just
before Recognize returns.

RRM_STROKE The granularity is set at the stroke level. A
result message is sent at each stroke. This is
used in the NULL recognizer.

RRM_SYMBOL The granularity is set at the symbol level. A
result message is sent at each symbol.
Default dictionary processing is disabled
when this value is used.

A recognizer is free to send the messages any time after the requested time (defined in the preceding
order), but it cannot send any messages sooner. Because of recognizer constraints, a recognizer may
combine intermediate results messages. For example, if an application requests RRM_WORD, the
recognizer may choose to return results on a line-by-line basis instead.

Results sent at a word boundary do not have to be sent strictly one word at a time. The requirements are
as follows:

· The raw data returned must be contiguous, and it must begin with a pen-down and end with a pen-up.
· The returned "word" may contain spaces. For example, "fat{space | NULL}cat" would be resolved into

two words, "fat cat." This is also necessary if the raw data for successive words overlaps.
· The recognizer should not send a word until it knows what follows the word. If the word is followed by

a word on the same line, the word should be space-terminated. If the word is followed by text on a
new line, the recognizer should append a soft newline symbol. The key point is that the recognizer
must make it possible for the application to detect word and line spacing so it can display the
recognized text appropriately.

· Once a word has been sent, the recognizer cannot change the results because of the late arrival of
more strokes.

The rules for returning results with RRM_NEWLINE are similar:

· The new line should be included with the symbol graph in the result.
· Once a word has been sent, the recognizer cannot change the results because of the late arrival of

more strokes.

wTimeOut
The wTimeOut member specifies the time-out threshold. After the time-out threshold has passed, the
recognizer stops the recognition process.

Time-out occurs if more than wTimeOut milliseconds elapse between the most recent pen-up and the
next pen-down. If time-out occurs, the recognition context is closed. Closing a recognition context means
no more data is accepted; the existing data is processed and the results are sent to the application. This
value is ignored if lPcm does not enable time-out.

In general, applications should use the value set by the user in the Control Panel. This value can be set
by setting this member to RC_WDEFAULT.

The maximum value allowed is 65,534 milliseconds. If wTimeOut is set to 0xFFFF (65,535), the system-
level value is used.

lPcmrectBound
rectExclude
These three members of the RC structure set the conditions for ending recognition. The lPcm member
sets the flags for ending recognition, expressed as a bitwise-OR combination of PCM_ values.

The two RECT members specify inclusive and exclusive rectangles for inking. The rectangle values are in
screen coordinates or, if RCO_TABLETCOORD is set, in tablet coordinates. RCO_TABLETCOORD
cannot be used with ProcessWriting.

When RCRESULT is returned, the rectBound and rectExclude values are converted from screen to
tablet coordinates and the RCO_TABLETCOORD flag is set.

Only pen events within rectBound are collected as part of the recognition context. If PCM_RECTBOUND

is set in lPcm, the first pen-down event outside the rectangle closes the context. Dragging the pen
outside the rectangle after starting inside does not close the context; the data is still collected outside the
rectangle.

If PCM_RECTEXCLUDE is set in lPcm, any pen-down event within rectExclude closes the context. The
event that ends pen collection mode¾that is, an event outside the bounding rectangle or inside the
exclusion¾is entered into Windows as a mouse event. For hit-testing the rectangles, the top and left
borders are included, but not the right or bottom borders.

The bounding rectangle set by InitRC is valid only until the window is resized or moved. If the window is
moved or resized, the application should specify again the rectBound member in the RC structure.

guide
The guide member is a structure of the GUIDE type. It contains information that specifies the placement
of guidelines in the writing area for the recognizer's use.

wRcOrient
The wRcOrient member specifies the orientation of the tablet, expressed as RCOR_ values. For a list of
orientation values, see the entry for RCOR_ values in Chapter 13, "Pen Application Programming
Interface Constants."

wRcDirect
The wRcDirect member informs the recognizer of the direction of writing, expressed as RCOR_ values.
There are both primary and secondary directions. For example, English is written from left to right
(primary) and then down the page (secondary). Chinese is often written from the top down (primary) and
then right to left across the page (secondary). For a list of direction values, see the entry for RCD_ values
in Chapter 13, "Pen Application Programming Interface Constants."

The high byte of the direction indicates primary direction; the low byte, secondary direction. A recognizer
can choose to ignore this word and support only the natural direction of the given language. The default
value is determined by the recognizer.

Not all recognizers can respond to this member.

nInkWidth
rgbInk
These two members specify the ink width and color to be used during inking. The nInkWidth member is
the thickness in pixels of the pen to use during inking. If this value is 0, no ink is drawn. The current
maximum value allowed is 15. The default is the ink width set in the global RC.

The rgbInk member is the color to use for inking. If this is not a solid color, it is mapped to the closest
solid color. The default is the ink color set in the global RC.

dwAppParam
dwRecognizer
These two members are analogous to the dwDictParam member described below. The dwAppParam
value is provided for use by the application and passed to the application by way of the lprc member in
the RCRESULT structure.

The dwRecognizer value is passed to the recognizer specified in rc.hrec. Applications can use this to
pass information to a private recognizer for functionality not directly supported.

These values are set to 0 by InitRC and should remain 0 if they are not used by the application or
recognizer.

dwDictParam
The dwDictParam parameter is set by an application and passed on to the dictionary by the RC
Manager. It is intended to provide for dictionary functionality not directly supported. For example, a
dictionary can request that the application pass in a pointer to a structure that contains a given sentence.
You can use this information to extend the dictionary functionality¾to highlight misspelled words, for
example.

If it is not used by the application, dwDictParam should be left to the value (0) set by InitRC.

rgwReserved[cwRcReservedMax]
The rgwReserved member is reserved. Applications should not change the values set by InitRC for
this member.

See Also
GUIDE, PCMINFO

ALC_, RCRT_, PCM_, RCD_, RCOR_

RCRESULT       

1.0 2.0

Applications that do not call the superseded functions RecognizeData or Recognize do not use the
RCRESULT structure. In conforming to version 2.0 of the Pen API, applications instead use HRCRESULT
objects, which render RCRESULT obsolete.

The RCRESULT structure is provided only for compatibility with version 1.0 of the Pen API,
and will not be supported in future versions.

typedef struct {
SYG syg;
UINT wResultsType;
int cSyv;
LPSYV lpsyv;
HANDLE hSyv;
int nBaseLine;
int nMidLine;
HPENDATA hpendata;
RECT rectBoundInk;
POINT pntEnd;
LPRC lprc;

} RCRESULT;

Members

syg

Symbol graph.
wResultsType

An RCRT_ value.
cSyv

Number of symbol values, not including the NULL terminator.
lpsyv

Null-terminated pointer to the recognizer's best guess.
hSyv

Globally shared handle to the symbol value specified by the lpsyv member.
nBaseLine

Zero or baseline of input writing.
nMidLine

Zero or midline of input writing.
hpendata

Handle to pen data.
rectBoundInk

Bounding rectangle for ink.
pntEnd

Point that terminated recognition.
lprc

Recognition context used.

Comments
When an application calls Recognize, RecognizeData, or ProcessWriting, the WM_RCRESULT
message is sent to the appropriate window procedure when the recognizer has a result to return. The
wParam parameter of the message contains the reason recognition ended (one of the REC_ codes). It is
REC_OK if more results will be sent; otherwise, it is the same value for the last message returned by
Recognize or RecognizeData. The lParam parameter is a far pointer to an RCRESULT structure. All of
the data in the RCRESULT structure is in tablet coordinates.

 The following sections elaborate on the RCRESULT members. All of the members are allocated with
GMEM_SHARE so they can be passed between processes.

syg
This member contains the raw results returned by the recognizer. These include the various possible
interpretations of the pen input, the mapping of the results to the raw data, and locations of any hot spots
if the result is a gesture. The syg.lpsyc member is not valid unless RCP_MAPCHAR was set in the RC
structure when Recognize or RecognizeData was called.

wResultsType
This member indicates the type of recognition results, expressed as a bitwise-OR combination of RCRT_
values. The RCRT_ values are not mutually exclusive. Note that the recognizer should never have to set
RCRT_GESTURETOKEYS, RCRT_ALREADYPROCESSED, or RCRT_GESTURETRANSLATED. For
a list of values, see the entry for RCRT_ values in Chapter 13, "Pen Application Programming Interface
Constants."

lpsyv
This member contains the symbols that are recognized. An application should use these values to display
the text or gestures recognized. The lpsyv member is the result of any dictionary search on the SYG
structure or further postprocessing. It is NULL if the NULL recognizer is used.

hpendata
This member contains the raw data captured during inking.

rectBoundInk
This is the bounding rectangle of the ink drawn during recognition. It is in coordinates of the window that
receives the results. If the user attempts to draw ink outside rc.rectbound, the ink will not be displayed.
However, rectBoundInk is calculated as though the ink were drawn.

If data is collected outside the bounding rectangle, the rectBound member of PENDATAHEADER
reflects this. (Note that rectBound applies only to pen-down points.) This means, however, that a portion
of the rectBoundInk rectangle lies outside the rc.rectBound rectangle. The actual ink drawn lies in the
intersection of rectBoundInk and the rc.rectBound rectangle. Before calculating the intersection,
convert rectBoundInk from tablet to screen coordinates. The bounding rectangle includes the width of
the ink drawn.

pntEnd

If recognition ended on a tap outside the bounding rectangle or inside the exclusive rectangle, pntEnd
contains the coordinates of those points in display coordinates.

lprc
This is the RC used for recognition. Any default values (RC_WDEFAULT or RC_LDEFAULT) are replaced
by the correct default value.

See Also
RC, SYG, RCRT_

RECTOFS       

1.0 2.0

Rectangle offset for nonisometric inflation of a rectangular writing area.

typedef struct {
int dLeft;
int dTop;
int dRight;
int dBottom;

} RECTOFS;

Members

dLeft

Inflation margin leftward from left side.
dTop

Inflation margin upward from top.
dRight

Inflation margin rightward from right.
dBottom

Inflation margin downward from bottom.

Comments
Inflation margins are in screen (pixel) coordinates. To inflate a window rectangle, dLeft and dTop should
be negative (moving in the negative x- and y-directions, respectively) and dRight and dBottom should be
positive. To deflate the rectangle, reverse the signs of the margins.

In addition to having the basic characteristics of an edit control, an hedit or bedit control must make
allowances for the input of handwriting. The client rectangle often needs to be adjusted to a larger size to
allow for easier writing.

For example, the cut gesture typically extends above the selected text it is deleting. If the gesture is
arbitrarily clipped off at the edge of the client window, recognition accuracy suffers. Likewise, restricting
handwriting input to stay within the lines can also hinder recognition accuracy. To correct this, rectangle
offsets are used in hedit and bedit controls to make the writing area slightly larger than the client window
size of a normal edit control. The HE_SETINFLATE and HE_GETINFLATE wParam values of the
WM_PENCTL message are used for this purpose. These messages use a RECTOFS structure as a
parameter. The values in the RECTOFS structure are added to the corresponding client area to create the
bounding rectangle for the ink.

The inflation does not need to be symmetrical in every direction.

See Also
WM_PENCTL, HE_SETINFLATE, HE_GETINFLATE

SKBINFO       

1.0 2.0

Stores information about the current onscreen keyboard.

typedef struct {
HWND hwnd;
UINT nPad;
BOOL fVisible;
BOOL fMinimized;
RECT rect;
DWORD dwReserved;

} SKBINFO;
Members

hwnd

Handle of window for onscreen keyboard.
nPad

Current view of the keypad. Either SKB_FULL, SKB_BASIC, or SKB_NUMPAD for full, basic, or
numeric keypad, respectively.

fVisible

TRUE if the keyboard is available and visible, FALSE otherwise.
fMinimized

TRUE if the keyboard is minimized, FALSE otherwise.
rect

Screen coordinates or the restored keyboard rectangle.
dwReserved

Must be 0.

See Also
ShowKeyboard

STRKFMT       

2.0

Provides a method for retrieving or changing the attributes of specified strokes in an iedit control. This
structure is used by the IE_GETFORMAT and IE_SETFORMAT messages.

typedef struct {
DWORD cbSize;
UINT iesf;
UINT iStrk;
PENTIP tip;
DWORD dwUser;
DWORD dwReserved;

} STRKFMT;

Members

cbSize

Size of this structure in bytes.
iesf

Stroke format flags. Note that the first three flags cannot be combined with each other by the bitwise
OR operator:

Constant Description
IESF_ALL Assume all strokes in the control.
IESF_SELECTION Assume all selected strokes.
IESF_STROKE Assume the stroke specified in the iStrk

member, described in "Comments"
section.

IESF_PENTIP Set both pen tip color and width.
IESF_TIPCOLOR Set only pen tip color.
IESF_TIPWIDTH Set only pen tip width.

iStrk

Index of a specific stroke.
tip

PENTIP structure, containing ink tip attributes.
dwUser

User data for stroke.
dwReserved

Reserved.

Comments
When sending either IE_GETFORMAT or IE_SETFORMAT, the application initializes the iesf member
with bit flags, indicating:

· The strokes in the iedit control to which the IE_ messages refer.
· The attributes (color and/or width) of those strokes.

Setting the IESF_STROKE bit flag in iesf limits action to the single stroke identified in iStrk. Setting
IESF_SELECTION references all selected strokes. Setting IESF_ALL references all strokes in the control.
These flags are mutually exclusive and cannot be combined.

The application must also set the bit flags IESF_TIPCOLOR or IESF_TIPWIDTH in the iesf member of
the structure. These bit flags identify the stroke attribute to which the IE_ messages refer. For
convenience, the defined value IESF_PENTIP combines IESF_TIPCOLOR and IESF_TIPWIDTH to
identify both color and width.

With these bit flags, an application can alter stroke color and width at the same time or alter only one
attribute while leaving the other unchanged.

Sending an IE_GETFORMAT message to the control produces the following results:

· If the requested strokes have the same color and width, the returned STRKFMT contains the
common color and width in the rgb and bwidth members of its PENTIP structure. The return value
from IE_GETFORMAT is 0.

· If the requested strokes do not all share the same attribute, the returned STRKFMT contains the
attribute of the last stroke in the group. The return value from IE_GETFORMAT contains the bit flags
IESF_TIPCOLOR and/or IESF_TIPWIDTH to indicate the attribute in which the strokes differ.

Before using STRKFMT, an application must initialize cbSize with sizeof(STRKFMT).

See Also
IE_GETFORMAT, IE_SETFORMAT, PENTIP

STROKEINFO       

1.0 2.0

Contains information about a sequence of pen data.

typedef struct {
UINT cPnt;
UINT cbPnts;
UINT wPdk;
DWORD dwTick;

} STROKEINFO;

Members

cPnt

Count of points in the stroke.
cbPnts

Used internally to contain length of compressed data. Applications should ignore this value.
wPdk

State of the stroke, expressed as a PDK_ value.
dwTick

Time at beginning of the stroke. dwTick holds the number of milliseconds that have elapsed since the
system tick reference that Windows determines at startup.

Comments
The STROKEINFO structure serves two main purposes. First, it is returned by the
GetPenHwEventData functions with each piece of new data from the tablet. Second, it is used in certain
pen data functions such as AddPenInputHRC, AddPointsPenData, and GetPenDataStroke as a
header for each stroke. In both cases, it contains information about a sequence of data from the tablet.

For examples and further information about STROKEINFO and its members, see the section
"Recognition Functions" in Chapter 8, "Writing a Recognizer."

For a list of stroke state bits, refer to the entry for PDK_ values in Chapter 13, "Pen Application
Programming Interface Constants."

See Also
AddPenInputHRC, GetPenDataStroke, GetPenInput, GetPenHwEventData, InsertPenDataStroke,
TargetPoints, PDK_

SYC       

1.0 2.0

The SYC symbol correspondence structure is best described in context with the SYG symbol graph and
SYE symbol element structures. For a description of the SYC structure, see the entry for SYG below.

The SYC structure is provided only for compatibility with version 1.0 of the Pen API and will
not be supported in future versions.

A single shape can be identified by one or more SYC structures.

typedef struct {
UINT wStrokeFirst;
UINT wPntFirst;
UINT wStrokeLast;
UINT wPntLast;
BOOL fLastSyc;

} SYC;

Members

wStrokeFirst

Index number of the first stroke of the correspondence.
wPntFirst

Index number of the first point in the stroke identified by wStrokeFirst.
wStrokeLast

Index number of the last stroke of the correspondence.
wPntLast

Index number of the last point in the stroke identified by wStrokeLast.
fLastSyc

TRUE if there are no more SYC structures for the current SYE (symbol element).

Comments
All indexes are zero-based, so that an index of 0 indicates the first of a sequence.

Figure 11.6 illustrates the relationship of symbol values and symbol graphs. The first line shows that a
symbol value is a single SYE symbol element. A series of symbol values can be connected by the
SYV_OR value to create an OR string, as the second line illustrates. This OR string begins with the
SYV_BEGINOR value and ends with a symbol value followed by SYV_ENDOR. The third line shows a
symbol graph that is simply a symbol value or an OR string, in either case ending with the SYV_NULL
value.

{ewc msdncd, EWGraphic, bsd23554 5 /a "SDK_5.BMP"}

See Also
RCRESULT, TrainContext, SYV_

SYE       

1.0 2.0

The SYE symbol element structure is best described in context with the SYG symbol graph and SYC
symbol correspondence structures. For a description of the SYE structure, see the entry for SYG below.

The SYE structure is provided only for compatibility with version 1.0 of the Pen API, and will
not be supported in future versions.

An SYE structure contains a symbol, which can be a character, gesture, or string.

typedef struct {
SYV syv;
LONG lRecogVal;
CL cl;
int iSyc;

} SYE;

Members

syv

Symbol value.
lRecogVal

Reserved.
cl

Confidence level.
iSyc

Index into array of SYC structures. The array identifies the raw data that makes up the symbol. It is
possible for several SYE structures to use the same SYC structures.

SYG       

1.0 2.0

A symbol graph, which represents the possible interpretations identified by the recognizer.

typedef struct {
POINT rgpntHotSpots[MAXHOTSPOT];
int cHotSpot;
int nFirstBox;
LONG lRecogVal;
LPSYE lpsye;
int cSye;
LPSYC lpsyc;
int cSyc;
SYV syv;
LONG lRecogVal;
CL cl;
int iSyc;
UINT wStrokeFirst;
UINT wPntFirst;
UINT wStrokeLast;
UINT wPntLast;
BOOL fLastSyc;

} SYG;

Members

rgpntHotSpots[MAXHOTSPOT]

Hot spots of the symbol (if any). MAXHOTSPOT is defined as 8.
cHotSpot

Number of valid hot spots in rgpntHotSpots.
nFirstBox

Row-major index to box of first character in result.
lRecogVal

Reserved.
lpsye

Pointer to array of SYE structures representing nodes of symbol graph.
cSye

Number of SYE structures in array lpsye.
lpsyc

Pointer to corresponding array of SYC symbol ink structures.
cSyc

Number of SYC structures in symbol graph.

Comments
All indexes are zero-based.

If a single entity recognized by the recognizer is mapped to a string of several symbol values, the
recognizer creates multiple SYE. This is the case for recognizers that can recognize highly stylized
sequences of characters¾for example, "ing"¾in which the individual characters are not necessarily
recognized.

The nFirstBox member has no meaning for gestures. A gesture is applied to the location indicated by its
hot spot.

The SYG, SYE, and SYC structures define the relationship between raw pen data and recognized results.
However, in version 2.0 of the Pen API they are rarely of interest to applications for two reasons. First, API
functions return recognition results without forcing the application to deal with the complexities of raw pen
data. And second, SYG, SYE, and SYC apply mainly to recognizers.

All nontrivial recognizers should somehow track the pen strokes that form each character in the returned
results. To be compatible with version 1.0, a recognizer must use the SYG, SYE, and SYC structures and
return a symbol graph¾an SYG structure¾as a member of the RCRESULT structure. Version 2.0 does
not mandate how a recognizer should map pen data to symbols. However, these three structures
represent a viable method. Recognizer developers writing for version 2.0 may want to use the structures
or create variations.

The following information applies to version 1.0 applications and recognizers, and to version 2.0
recognizers that employ symbol graphs to relate strokes to recognized symbols. For further information
about SYG, SYE, and SYC, see "Returning Results" in Chapter 8, "Writing a Recognizer."

A symbol graph is a representation of the possible interpretations identified by the recognizer. The RC
Manager processes the symbol graph using the dictionary path to identify the best interpretation. This
best interpretation is returned in the results message along with the symbol graph.

A symbol value is a 32-bit value that represents a glyph (such as a character or a gesture) recognized by
a recognizer. This is sometimes referred to as a symbol. A symbol string is an array of symbols terminated
with SYV_NULL.

Each element of the symbol graph, an SYE, contains information about the recognized character¾for
example, bounding rectangle and hot spots. The SYC structure maps SYE structures back to the
corresponding raw data. If two or more consecutive SYE structures map to the same SYC, they represent
an indivisible unit. For example, the user might teach the system of "th" with the crossbar of the "t"
connected to the "h." SYC structures are used primarily for training.

A version 1.0 application generally does not use the symbol graph directly. Instead, it uses the hSyv
member of RCRESULT, which contains a symbol string that represents the best interpretation from the
symbol graph. SYE and SYC structures work together with the HPENDATA memory block to identify
strokes and meanings for ink. The following table lists the basic functions of these structures.

Structure Description
HPENDATA Contains raw data information: strokes, pen

up, pen down, points, and so on.
SYC A symbol character map. SYC structures

delimit strokes in an HPENDATA. A single
shape can be identified
by one or more SYC structures. Each SYC
identifies a starting stroke, an ending stroke,
a starting point, and an ending point. A flag
also indicates whether subsequent SYC
structures in the array contain additional

strokes for the shape. (This feature is used
for delayed strokes, such as the cross stroke
of the letter "t.")

SYE A symbol element. An SYE contains a
symbol, which can be a character, a gesture,
or a string. The symbol
is denoted by an SYV. The SYE contains an
index into an array of SYC structures; this
array identifies the
raw data that makes up the symbol. It is
possible for several SYEs to use the same
SYC structures. The
SYC structures contain indexes into the raw
data.

SYV A symbol value.
SYG A symbol graph.

A set of SYEs and SYCs, together with an HPENDATA structure, is sufficient to define ink and specify
how that ink should be interpreted. The training functions TrainContext and TrainInk use this information
in training.

TARGET       

2.0

Contains information about a single target.

typedef struct {
DWORD dwFlags;
DWORD idTarget;
HTRG htrgTarget;
RECTL rectBound;
DWORD dwData;
RECTL rectBoundInk;
RECTL rectBoundLastInk;

} TARGET;

Members

dwFlags

Reserved for future extensions. Must be set to 0.
idTarget

Array index to the target within rgTarget array in TARGINFO structure.
htrgTarget

Handle to the owner window that receives messages on behalf of the target.
rectBound

Bounding rectangle of the target.
dwData

Target-specific extra information to be filled during data collection.
rectBoundInk

Reserved; must be 0.
rectBoundLastInk

Reserved; must be 0.

See Also
TargetPoints, TARGINFO, WM_PENEVENT, INPPARAMS

TARGINFO       

2.0

A set of targets.

typedef struct {
DWORD cbSize;
DWORD dwFlags;
HTRG htrgOwner;
WORD cTargets;
WORD iTargetLast;
TARGET rgTarget[1];

} TARGINFO;

Members

cbSize

Size of this structure in bytes. Note that this is the original size, which assumes only a single TARGET
structure in rgTarget. The value should be sizeof(TARGINFO).

dwFlags

Flags have been defined to get different targeting behavior depending on the needs of the calling
application. These flags work as hints for the targeting algorithm. The flags are considered by the Pen
API in the order in which they appear in the following list. If none of the flags are set, the stroke is not
assigned to any target.
TPT_TEXTUAL

When this flag is set, Windows applies textual heuristics, such as identifying word breaks, while
deciding the target to which a stroke should be assigned.
If there is no text to intersect with, the input is disregarded completely. Therefore, this option should
not generally be used by itself.

TPT_INTERSECTINK

Indicates that if the stroke being targeted intersects with the ink in a target, the stroke should be
assigned to that target. Intersection is determined based on the bounding rectangle of the stroke
and the bounding rectangle of the pen data assigned to a target. If there is no ink to intersect with,
the input is disregarded completely. Therefore, this option should not generally be used by itself.

TPT_CLOSEST

Indicates that the stroke should be targeted to the target closest to the stroke. The bounding
rectangle of the stroke and the bounding rectangle of the target are specified by the rectBound
element of the TARGET structure.

htrgOwner

Handle to the owner target. Use the HtrgFromHwnd and HwndFromHtrg macros to convert a target
handle of HTRG type to and from an HWND type.

cTargets

Number of targets.
iTargetLast

Last target. Used by the TargetPoints function during textual heuristics. iTargetLast contains the

number of the target window that last received data. The system uses this value to optimize its
determination of the next target. Applications can read but should not overwrite iTargetLast.

rgTarget[1]

Variable-length array of targets.

Comments
For best results, most applications should set all hints for targeting. That is, the dwFlags member of
TARGINFO should be set to TPT_DEFAULT, which is the combination of TPT_TEXTUAL |
TPT_INTERSECTINK | TPT_CLOSEST.

Before using TARGINFO, an application must initialize cbSize with sizeof(TARGINFO).

See Also
TARGET, TargetPoints

Pen Application Programming
Interface Messages

This chapter describes in alphabetical order many of the messages and submessages defined by the Pen
Application Programming Interface. Each entry describes a separate message organized under the
following topic headings:

Topic heading Description
Parameters Message wParam and lParam

parameters.
Return Value Return value from the Windows

SendMessage function (if applicable).
Comments Additional information about the

message.
See Also Cross-references to related API

services.

HE_CANCELCONVERT
Cancels Kana-to-Kanji conversion. Submessage of WM_PENCTL. (Japanese version only.)

Parameters
wParam

HE_CANCELCONVERT.
lParam

Reserved and must be 0.

Return Value
Returns TRUE if there are no errors; otherwise, returns FALSE.

HE_CHAROFFSET
Converts the logical character position of a character in a control into a byte offset to the character.
Submessage of WM_PENCTL.

Parameters
wParam

HE_CHAROFFSET.
lParam

The low-order word contains the logical character position. The high-order word is reserved and must
be 0.

Return Value
If the supplied logical character position is less than the total number of logical characters in the control,
the low-order word of the return value contains the requested byte offset of the position and the high-
order word is 0. Otherwise, the low-order word contains the length of the text in bytes and the high word
contains 0xFFFF.

Comments
This submessage is for bedit controls only. Both the logical character position and the byte offset are
zero-based.

See Also
WM_PENCTL

HE_CHARPOSITION
Converts a byte offset in the text buffer of a control to the logical character position, which contains the
byte specified by the byte offset. Submessage of WM_PENCTL.

Parameters
wParam

HE_CHARPOSITION.
lParam

The low-order word contains the byte offset. The high word is reserved and must be 0.

Return Value
If the supplied byte offset is less than the length of the text in bytes, the low-order word of the return value
contains the logical character position and the high-order word is 0; otherwise, the low-order word
contains the total number of logical characters in the text of the control and the high-order word contains
0xFFFF.

Comments
This submessage is for bedit controls only. Both the byte offset and the logical character position are
zero-based.

See Also
HE_CHAROFFSET, WM_PENCTL

HE_DEFAULTFONT
Switches the font of a bedit control to the default font that the bedit control selected at the time of creation.
Submessage of WM_PENCTL.

Parameters
wParam

HE_DEFAULTFONT.
lParam

If the low-order word is nonzero, the control is repainted.

Return Value
The return value is undefined.

Comments
This submessage is for bedit controls only.

See Also
WM_PENCTL

HE_ENABLEALTLIST
Enables or disables the alternate list in a bedit control. Submessage of WM_PENCTL.

Parameters
wParam

HE_ENABLEALTLIST.
lParam

If the low-order word is nonzero, the alternate list menu is enabled; otherwise, it is disabled.

Return Value
The return value is undefined.

Comments
This submessage is for bedit controls only.

See Also
HE_HIDEALTLIST, HE_SHOWALTLIST, WM_PENCTL

HE_FIXKKCONVERT
Confirm undetermined string and close Input Method Editor (IME). Submessage of WM_PENCTL.
(Japanese version only.)

Parameters
wParam

HE_FIXKKCONVERT.
lParam

Reserved and must be 0.

Return Value
Returns TRUE if there are no errors; otherwise, returns FALSE.

Comments
When in preconversion mode, the marked conversion string area is removed. Marked conversion strings
are indicated in the Input Method Editor (IME) in a different shade than standard edit control text
selection. When in conversion mode (no marked string), the string is confirmed and the IME is closed.
Available for bedits only.

HE_GETBOXLAYOUT
Retrieves the box layout for a control. Submessage of WM_PENCTL.

Parameters
wParam

HE_GETBOXLAYOUT.
lParam

Address of a BOXLAYOUT structure that is filled with the current box layout for the control.

Return Value
The return value is undefined.

Comments
This submessage is for bedit controls only.

See Also
BOXLAYOUT, WM_PENCTL

HE_GETCONVERTRANGE
Gets the range of the marked conversion string. Submessage of WM_PENCTL. (Japanese version only.)

Parameters
wParam

HE_GETCONVERTCHAR.
lParam

Not used.

Return Value
Returns a 32-bit value with the starting character position (not byte position) of the marked conversion
string in the low-order word and the position of the last character of the marked conversion string plus 1 in
the high-order word.

Comments
Available for bedits only. The message returns a valid value only when in preconversion mode; otherwise,
it returns 0.

HE_GETINFLATE
Retrieves the inflation rectangle for a control. Submessage of WM_PENCTL.

Parameters
wParam

HE_GETINFLATE.
lParam

Address of a RECTOFS structure that is filled with the current values for the inflation rectangle.

Return Value
Returns TRUE if successful; otherwise, FALSE.

Comments
For a description of how to increase or decrease the writing area of a control, see "HE_SETINFLATE
Submessage" in Chapter 3, "The Writing Process."

See Also
HE_SETINFLATE, RECTOFS, WM_PENCTL

HE_GETINKHANDLE
Retrieves the ink handle for the current control. Submessage of WM_PENCTL.

Parameters
wParam

HE_GETINKHANDLE.
lParam

Unused.

Return Value
The low-order word of the return value contains a handle to the captured ink. If the return value is NULL,
the control is not in ink mode.

Comments
The returned ink handle is valid only during the life of the control. The handle becomes invalid after the
control is destroyed.

See Also
WM_PENCTL

HE_GETKKCONVERT
Determines if the Input Method Editor (IME) is in conversion mode. Submessage of WM_PENCTL.
(Japanese version only.)

Parameters
wParam

HE_GETKKCONVERT.
lParam

Reserved and must be 0.

Return Value
Returns TRUE if the IME is in conversion mode; otherwise, returns FALSE.

Comments
Available for bedits only.

HE_GETKKSTATUS
Determines the mode of the Kana-to-Kanji conversion in the Input Method Editor (IME). Submessage of
WM_PENCTL. (Japanese version only.)

Parameters
wParam

HE_GETKKSTATUS.
lParam

Reserved and must be 0.

Return Value
Returns one of the following values or FALSE:

Value Current Status
HEKKR_PRECONVER
T

In preconversion mode.

HEKKR_CONVERT In conversion mode
HHEKKR_NOCONVER
T

In nonconversion mode

Comments
The IME recognizes three modes: preconversion mode, conversion mode, and non-conversion mode. In
preconversion mode, the user has entered text intended for conversion by the IME and the text is marked.
When the user invokes the IME on the marked range of characters, the conversion mode is entered and
the IME is active. Once the user confirms an IME conversion, the nonconversion mode (normal mode) is
entered.

The term "marked" refers to the range of cells in the bedit that have been selected for character
conversion. Characters marked for conversion appear differently to the user than normally selected
characters.

This submessage is available for bedits only. This message can also be used to determine keyboard IME
status by checking for HEKKR_CONVERT.

HE_GETUNDERLINE
Queries for the current underline mode. Submessage of WM_PENCTL.

Parameters
wParam

HE_GETUNDERLINE.
lParam

Unused.

Return Value
Returns TRUE if the underline mode is set; otherwise, FALSE.

Comments
This submessage is for hedit controls only.

See Also
WM_PENCTL

HE_HIDEALTLIST
Hides the alternate list in a bedit control, assuming an alternate list menu is being displayed. Submessage
of WM_PENCTL.

Parameters
wParam

HE_HIDEALTLIST.
lParam

If the low-order word is HEAL_DEFAULT, the alternate list menu is hidden.

Return Value
The return value is undefined.

Comments
This submessage is for bedit controls only.

See Also
HE_ENABLEALTLIST, HE_SHOWTLIST, WM_PENCTL

HE_KKCONVERT
Starts Kana-to-Kanji conversion. Submessage of WM_PENCTL. (Japanese version only.)

Parameters
wParam

HE_KKCONVERT.
lParam

Must be one of the following values:
Value Meaning
HEKK_DEFAULT The first time the conversion is specified, the

selected character string is replaced with the
conversion result; the second time it is
specified, the conversion candidate dialog
box appears.

HEKK_CONVERT The selected character string is replaced
with the conversion result regardless of how
many times conversion has been specified.

HEKK_CANDIDATE Causes the conversion candidate dialog box
to appear.

HEKK_DBCSCHAR The SBCS characters (0x20 - 0x7E, 0xA1 -
0xDF) are replaced by their DBCS
equivalents.

HEKK_SBCSCHAR The DBCS characters in the selected
character string or marked conversion string
that have equivalent SBCS representations
are replaced by their equivalent SBCS
characters.

HEKK_HIRAGANA The katakana characters (DBCS or SBCS) in
the selected character string or marked
conversion string are replaced with their
hiragana equivalents.

HEKK_KATAKANA The hiragana characters in the selected
character string or marked conversion string
are replaced with their DBCS katakana
representation.

Return Value
Returns TRUE if there are no errors; otherwise, returns FALSE:

Comments
In this message, "marked conversion string" indicates the string in the Input Method Editor (IME) that is
marked for conversion. Text marked for conversion is indicated by a different selection color than that
used for normal text selection in a standard text edit control. Available for bedits only.

HE_PUTCONVERTCHAR
Sends a character to the Input Method Editor (IME) and marks it for conversion. Submessage of
WM_PENCTL. (Japanese version only.)

Parameters
wParam

HE_PUTCONVERTCHAR.
lParam

The low-order word contains the character code, which can be an SBCS or DBCS character.

Return Value
Returns TRUE if there are no errors; otherwise, returns FALSE.

Comments
Posting this message is exactly like posting a WM_CHAR message to a bedit or edit control with the
exception that the posted character also acquires the attribute of being a character marked for conversion
in the Input Method Editor. This sub-message is available for bedits only.

HE_SETBOXLAYOUT
Sets the box layout for a control. Submessage of WM_PENCTL. Submessage of WM_PENCTL.

Parameters
wParam

HE_SETBOXLAYOUT.
lParam

Address of the BOXLAYOUT structure to be set.

Return Value
Returns TRUE if successful; otherwise, returns FALSE.

Comments
This submessage is for bedit controls only.

See Also
WM_PENCTL

HE_SETCONVERTRANGE
Sets the range of the marked conversion string. Submessage of WM_PENCTL. (Japanese version only.)

Parameters
wParam

HE_SETIMEDEFAULT.
lParam

The low-order word contains the starting character position (not byte position) of the marked
conversion string. The high-order word contains the ending character position plus 1.

Return Value
Returns TRUE if there are no errors; otherwise, returns FALSE.

Comments
Available for bedits only. If the starting character position is 0 and the ending char-acter position is -1, all
the text in the control becomes the marked conversion string. If the starting character is -1, the marked
conversion string area is removed. When characters are marked for conversion, the Input Method Editor
is said to be in preconversion mode.

Returns FALSE if in conversion mode. If there is a selection, the selection will be cleared. The caret will
be moved to the end of the marked conversion string.

HE_SETINFLATE
Sets the inflation rectangle for a control. Submessage of WM_PENCTL.

Parameters
wParam

HE_SETINFLATE.
lParam

Address of a RECTOFS structure specifying the inflation margins for the writing window.

Return Value
Returns TRUE if successful, or FALSE if an invalid window rectangle is specified.

Comments
This is a submessage of the WM_PENCTL message.

For a description of how to increase or decrease the writing area of a control, see "HE_SETINFLATE
Submessage" in Chapter 3, "The Writing Process."

See Also
HE_GETINFLATE, RECTOFS, WM_PENCTL

HE_SETINKMODE
Starts ink data collection in a control. Submessage of WM_PENCTL.

Parameters
wParam

HE_SETINKMODE.
lParam

The low-order word is the initial HPENDATA object or NULL. If the initial HPENDATA is supplied, it
must be relative to the top-left corner of the client rectangle of the control.

Return Value
Returns TRUE if successful; otherwise, returns FALSE.

Comments
This is a submessage of the WM_PENCTL message.

See Also
WM_PENCTL

HE_SETUNDERLINE
Sets or cancels underline mode in an hedit control. Submessage of WM_PENCTL.

Parameters
wParam

HE_SETUNDERLINE.
lParam

The low-order word is TRUE to set underline mode and FALSE to cancel it.

Return Value
Returns the current underline mode.

Comments
This submessage is for single-line hedit controls only.

See Also
WM_PENCTL

HE_SHOWALTLIST
Displays the alternate list menu for the current cell in a bedit control, assuming that alternate lists are
enabled. Submessage of WM_PENCTL.

Parameters
wParam

HE_SHOWALTLIST.
lParam

If the low-order word is HEAL_DEFAULT, the alternate list menu is displayed.

Return Value
If more than one character is selected, the alternate list of the first character in the selection is displayed.
If nothing is selected, the alternate list for the character to the right of the caret is displayed and the return
value is TRUE.

Comments
This submessage is for bedit controls only. If more than one box is selected, the HE_SHOWALTLIST
message will drop a word alternate list menu; otherwise, it will drop a character alternate list menu.

See Also
HE_ENABLEALTLIST, HE_HIDEALTLIST, WM_PENCTL

HE_STOPINKMODE
Stops ink collection in a control. Submessage of WM_PENCTL.

Parameters
wParam

HE_STOPINKMODE.
lParam

If the low-order word is HEP_RECOG, the control performs recognition and displays text. If the low-
order word is HEP_NORECOG (0), the control removes the ink without performing recognition. If the
low-order word is HEP_WAITFORTAP, the control performs recognition when the next tap in the
writing area occurs.

Return Value
Returns TRUE if successful; otherwise, returns FALSE.

Comments
This is a submessage of the WM_PENCTL message.

See Also
WM_PENCTL

HN_BEGINDIALOG
Sent by a bedit or hedit control to its parent window just before the control puts up any kind of dialog,
including the lens, edit text, or garbage-detection dialogs.

The control's parent window receives this notification message through a WM_COMMAND message.

Parameters
wParam

Specifies the identifier of the hedit or bedit control.
lParam

Specifies the handle of the hedit or bedit control in the low-order word and the HN_BEGINDIALOG
notification message in the high-order word.

Return Value
If the parent window returns TRUE to this notification message, the bedit or hedit control refrains from
opening the dialog; otherwise, the dialog is opened. Note that the application can disable the hedit or
bedit control's ability to open a dialog by specificying CIH_NOEDITTEXT in the WM_CTLINIT message.

HN_ENDDIALOG
Sent by a bedit or hedit control to its parent window of the dialog when a dialog opened by the control is
destroyed.

The control's parent window receives this notification message through a WM_COMMAND message.

Parameters
wParam

Specifies the identifier of the hedit or bedit control.
lParam

Specifies the handle of the hedit or bedit control in the low-order word and the HN_ENDDIALOG
notification message in the high-order word.

Return Value
The return value is ignored.

HN_ENDKKCONVERT
Sent after a bedit control has completed the Kana-to-Kanji conversion. Submessage of WM_PENCTL.
(Japanese version only.)

The control's parent window receives this notification message through a WM_COMMAND message.

Parameters
wParam

Specifies the identifier of the hedit or bedit control.
lParam

Specifies the handle of the hedit or bedit control in the low-order word and the HN_ENDKKCONVERT
notification message in the high-order word.

Return Value
The return value is ignored.

HN_ENDREC
Sent after an hedit or bedit control has acted upon the results of recognition from a recognition session.

The control's parent window receives this notification message through a WM_COMMAND message.

Parameters
wParam

Specifies the identifier of the hedit or bedit control.
lParam

Specifies the handle of the hedit or bedit control in the low-order word and the HN_ENDREC
notification message in the high-order word.

Return Value
The return value is ignored.

HN_RESULT
Sent when an hedit or bedit control receives results of inking or recognition from a recognition session,
but before the control absorbs the results into its internal data structures.

The control's parent window receives this notification message through a WM_COMMAND message.

Parameters
wParam

Specifies the identifier of the hedit or bedit control.
lParam

Specifies the handle of the hedit or bedit control in the low-order word and the HN_RESULT
notification message in the high-order word.

Return Value
The return value is ignored.

Comments
The application can get the results and optionally modify them using the WM_PENMISC message with
the PMSC_GETSYMBOLCOUNT, PMSC_GETSYMBOLS, and the PMSC_SETSYMBOLS submessages.

See Also
WM_PENMISC

IE_CANUNDO
Retrieves an indication of whether the control can undo the last user operation.

Parameters
wParam

Not used; must be 0.
lParam

Not used; must be 0.

Return Value
Returns one of the following values:

Constant Description
IER_YES The control can undo the last operation.
IER_NO The control cannot undo the last operation or

the control has security protection
disallowing an undo operation.

IER_PARAMERR wParam or lParam is invalid.

IE_DOCOMMAND
Causes an ink edit control to execute a command.

Parameters
wParam

Contains one of the following command message codes:
Constant Description
IEM_CLEAR Clear (delete) the selection.
IEM_COPY Copy selected strokes.
IEM_CUT Cut selected strokes.
IEM_ERASE Use eraser mode to erase.
IEM_LASSO Use lasso mode to select strokes.
IEM_PASTE Paste Clipboard contents to the iedit

control.
IEM_PROPERTIES Invoke the properties dialog box on the

selected strokes.
IEM_RESIZE Resize selected strokes.
IEM_SELECTALL Select all the strokes in the control.
IEM_UNDO Undo the last action.

lParam

Not used; must be 0.

Return Value
Returns IER_OK if successful; otherwise, returns one of the following:

Constant Description
IER_PARAMERR wParam or lParam is invalid.
IER_MEMERR A memory error occurred.
IER_SECURITY The control has security protection

disallowing the operation.

Comments
An application can use this message to force the ink edit control to execute a valid command. For
example, an application might have a toolbar button or menu item that can be used to trigger a copy
command. The IE_DOCOMMAND message can be used in response to the user's pressing the button or
selecting the menu item to have the iedit control copy the selected ink to the Clipboard.

The iedit control sends its parent an IN_COMMAND notification if the IEN_EDIT notify bit is set, to which
the parent can respond in the usual ways. Sending a command that the iedit control cannot interpret (that
is, a command code of IEM_USER or above) causes any specified notification but the iedit control takes
no other action.

The IEN_EDIT bit is set by default. It should be cleared if the control's parent does not want to receive the
IN_COMMAND notification message.

See Also

IE_GETCOMMAND

IE_EMPTYUNDOBUFFER
Empties the undo buffer.

Parameters
wParam

Not used; must be 0.
lParam

Not used; must be 0.

Return Value
Returns one of the following:

Constant Description
IER_OK Success.
IER_PARAMERR wParam or lParam is invalid.
IER_SECURITY The control has security protection

disallowing the operation.

Comments
If there is nothing in the undo buffer, this message returns IER_OK but does nothing else. As long as the
buffer remains empty after sending IE_EMPTYUNDOBUFFER, the messages IE_CANUNDO and
WM_UNDO return FALSE.

See Also
IE_CANUNDO

IE_GETAPPDATA
Retrieves the application data saved in the ink edit control.

Parameters
wParam

Not used; must be 0.
lParam

Not used; must be 0.

Return Value
Returns the contents of the application data area if successful; otherwise, returns IER_PARAMERR to
indicate that wParam or lParam is invalid.

Comments
An application can save any DWORD value with the ink edit control. The control does not use this data.
The IE_SETAPPDATA and IE_GETAPPDATA messages provide the only means for an application to
interact with the data.

See Also
IE_SETAPPDATA

IE_GETBKGND
Retrieves the current background painting options of an ink edit control.

Parameters
wParam

Not used; must be 0.
lParam

Address of a WORD variable that receives the current background options, as given in the following
list:

Constant Description
IEB_BIT_CENTER Center supplied bitmap in control.
IEB_BIT_STRETCH Stretch bitmap to fit control.
IEB_BIT_TILE Tile supplied bitmap repeatedly in

control.
IEB_BIT_UL Align supplied bitmap to upper-left

corner in the control. (UL stands for
"upper left.")

IEB_BRUSH Use application-supplied brush in
lParam.

IEB_DEFAULT Do default background (use
COLOR_WINDOW).

IEB_OWNERDRAW Parent will draw background.

Return Value
If successful, returns a handle to the background bitmap or a brush, or NULL, according to the option
specified in lParam; otherwise, returns IER_PARAMERR to indicate that wParam or lParam is invalid.

Comments
The returned handle is owned by the iedit control; the application should not delete it. If the application
needs to preserve this information, it should copy the handle.

See Also
IE_SETBKGND, IE_GETGRIDPEN, IE_SETGRIDPEN

IE_GETCOMMAND
Retrieves the menu item number of a selected command.

Parameters
wParam

Not used; must be 0.
lParam

Not used; must be 0.

Return Value
Returns the menu item number if successful; otherwise, returns one of the following:

Constant Description
IER_PARAMERR wParam or lParam is invalid.
IER_NOCOMMAND Attempt to issue IE_GETCOMMAND when

no command was selected.

Comments
The application sends the IE_GETCOMMAND message when it receives an IN_COMMAND notification
to find out what menu item the user selected. This message can be sent only during processing of an
IN_COMMAND notification. It returns the IER_NOCOMMAND error code if sent at any other time.

See Also
IE_DOCOMMAND

IE_GETCOUNT
Retrieves the count of strokes in the control.

Parameters
wParam

Not used; must be 0.
lParam

Not used; must be 0.

Return Value
If successful, returns the total number of strokes in the control; otherwise, returns IER_PARAMERR to
indicate that wParam or lParam is invalid.

See Also
IE_GETSELCOUNT

IE_GETDRAWOPTS
Retrieves the ink-drawing option.

Parameters
wParam

Not used; must be 0.
lParam

Not used; must be 0.

Return Value
Returns one of the following ink-drawing options:

Constant Description
IEDO_FAST Drawing is done as fast as possible. This is

the default setting.
IEDO_NONE No drawing is done (disabled drawing).
IEDO_SAVEUPSTROK
ES

Save pen-up strokes in the HPENDATA
object.

Comments
IEDO_FAST and IEDO_NONE are mutually exclusive options.

See Also
IE_SETDRAWOPTS

IE_GETERASERTIP
Retrieves the eraser pen tip.

Parameters
wParam

Not used; must be 0.
lParam

Address of a PENTIP structure.

Return Value
Returns IER_OK if successful; otherwise, returns IER_PARAMERR to indicate that wParam or lParam is
invalid.

Comments
The PENTIP structure is filled with the current pen tip used for erasing.

See Also
PENTIP, IE_SETERASERTIP

IE_GETFORMAT
Retrieves the current format of a stroke or a set of strokes in an iedit control.

Parameters
wParam

Not used; must be 0.
lParam

Address of a STRKFMT structure.

Return Value
If successful, returns bit flags that indicate whether the strokes identified in the STRKFMT structure have
different color or width, as described in the "Comments" section.

If an error occurs, returns one of the following values:

Constant Description
IER_ERROR Unknown error.
IER_PARAMERR wParam or lParam is invalid. Also returned

when there is an invalid stroke index and the
IESF_STROKE option is specified in the iesf
member of the STRKFMT structure.

IER_SECURITY The control has security protection
disallowing the operation.

IER_SELECTION No valid selection when the
IESF_SELECTION option is specified in the
iesf member of the STRKFMT structure.

Comments
If the value in the iesf member of the STRKFMT structure has the IESF_STROKE bit set,
IE_GETFORMAT refers to the single stroke identified in the iStrk member. In this case:

· The return value is 0.
· The bwidth and rgb members in PENTIP specified in the STRKFMT structure contain the stroke's

color and width.

If either the bit IESF_SELECTION or IESF_ALL is set in iesf, IE_GETFORMAT retrieves format
information for multiple strokes. In this case, the return value con-tains the IESF_TIPCOLOR or
IESF_TIPWIDTH bit flags that indicate whether the multiple strokes share the same ink color and width.

For example, if the multiple requested strokes all have the same width, then

· The IESF_TIPWIDTH bit of the return value is 0 to indicate the strokes all have the same width.
· The bwidth member in PENTIP specified in the STRKFMT structure contains the common width.

If the strokes do not all have the same color, IE_GETFORMAT returns the following information:

· The IESF_TIPCOLOR bit is set in the return value to indicate the strokes do not share a common
color.

· The rgb member in PENTIP specified in the STRKFMT structure contains the color of the last stroke
in the group.

The caller must initialize the cbSize member of the STRKFMT structure to sizeof(STRKFMT) before
sending IE_GETFORMAT.

The supplied STRKFMT structure specifies the stroke or strokes for which the attributes are desired. The
structure is filled according to the request and the actual stroke attributes.

See Also
IE_SETFORMAT, PENTIP, STRKFMT

IE_GETGESTURE
Retrieves the specifics of a gesture.

Parameters
wParam

Not used; must be 0.
lParam

Not used; must be 0.

Return Value
Returns an HRCRESULT of the gesture if successful; otherwise, returns one of the following:

Constant Description
IER_PARAMERR wParam or lParam is invalid.
IER_NOGESTURE Indicates an attempt to issue

IE_GETGESTURE when no gesture was
performed.

Comments
An application sends IE_GETGESTURE when it receives an IN_GESTURE notifi-cation, to retrieve the
specifics of the user's gesture. This message can be sent only during processing of an IN_GESTURE
notification. It returns the error code IER_NOGESTURE if it is set at any other time.

If successful, the application receives an HRCRESULT, which can then be used to get information about
the gesture specifics. This handle is still owned by the iedit control, however, and the application must
neither delete the handle nor modify the data to which it refers.

IE_GETGRIDORIGIN
Retrieves the current origin of the rule or grid-line settings for the control.

Parameters
wParam

Not used; must be 0.
lParam

Not used; must be 0.

Return Value
Returns the x-coordinate of the origin in the low-order word and the y-coordinate of the origin in the high-
order word, if successful; otherwise, returns IER_PARAMERR to indicate that wParam or lParam is
invalid.

See Also
IE_GETBKGND, IE_GETGRIDORIGIN, IE_GETGRIDSIZE, IE_SETBKGND, IE_SETGRIDORIGIN,
IE_SETGRIDPEN, IE_SETGRIDSIZE

IE_GETGRIDPEN
Retrieves the current GDI pen used to draw the rules or grid lines for the control.

Parameters
wParam

Not used; must be 0.
lParam

Not used; must be 0.

Return Value
If successful, returns a handle to a GDI pen that is being used to draw the grid lines. This handle can be
NULL; otherwise, returns IER_PARAMERR to indicate that wParam or lParam is invalid.

Comments
The handle of the GDI pen returned remains the property of the iedit control. The application must not
delete this handle.

See Also
IE_GETBKGND, IE_GETGRIDORIGIN, IE_GETGRIDSIZE, IE_SETBKGND, IE_SETGRIDORIGIN,
IE_SETGRIDPEN, IE_SETGRIDSIZE

IE_GETGRIDSIZE
Retrieves the current horizontal and vertical spacing of the rule or grid-line settings for the control.

Parameters
wParam

Not used; must be 0.
lParam

Not used; must be 0.

Return Value
If successful, the low-order word has the horizontal spacing and the high-order word has the vertical
spacing; otherwise, returns IER_PARAMERR to indicate that wParam or lParam is invalid.

See Also
IE_GETBKGND, IE_GETGRIDORIGIN, IE_GETGRIDPEN, IE_SETBKGND, IE_SETGRIDORIGIN,
IE_SETGRIDPEN, IE_SETGRIDSIZE

IE_GETINK
Retrieves the contents of an ink edit control.

Parameters
wParam

IEGI_ALL to get the entire ink, or IEGI_SELECTION to get only the selected ink.
lParam

Not used; must be 0.

Return Value
Returns the handle to the HPENDATA structure if successful; otherwise, returns one of the following:

Constant Description
IER_PARAMERR wParam or lParam is invalid.
IER_MEMERR A memory error occurred.
IER_SECURITY The control has security protection

disallowing the operation.
IER_SELECTION Nothing is selected in the control; operation

assumes a selection.

Comments
The returned HPENDATA structure becomes the property of the application, which must eventually
destroy it. This handle is a copy of the handle used internally by the control. An application cannot change
the control by modifying the pen data referred to by this handle, although the modified handle can
subsequently be used in an IE_SETINK call, which modifies the control's contents.

See Also
IE_SETINK

IE_GETINKINPUT
Retrieves the current ink input options for the control.

Parameters
wParam

Not used; must be 0.
lParam

Not used; must be 0.

Return Value
Returns the current ink input bits if successful; otherwise, returns IER_PARAMERR to indicate that
wParam or lParam is invalid.

Comments
The ink input bits are as follows:

Constant Description
IEI_MOVE Move all ink inside the control.
IEI_RESIZE Resize all ink to fit inside the control.
IEI_CROP Crop all ink that falls outside the control.
IEI_DISCARD Discard all ink if any falls outside the control.

See Also
IE_SETINKINPUT

IE_GETINKRECT
Retrieves the bounding rectangle of the ink.

Parameters
wParam

Not used; must be 0.
lParam

Address of a RECT structure.

Return Value
Returns IER_OK if successful; otherwise, returns IER_PARAMERR to indicate that wParam or lParam is
invalid.

Comments
The RECT structure is filled with the bounding rectangle of the current ink in the control. The rectangle is
in the same coordinates as the scaling mode the HPENDATA object is in.

IE_GETMENU
Retrieves a handle to an ink edit control's pop-up menu.

Parameters
wParam

Not used; must be 0.
lParam

Not used; must be 0.

Return Value
Returns the handle to the menu if successful; otherwise, returns IER_PARAMERR to indicate that
wParam or lParam is invalid.

Comments
The iedit control continues to own the menu handle.

The application can perform standard menu operations upon the returned handle, including the addition,
deletion, and modification of menu items. The application's changes are reflected the next time the pop-
up menu is invoked.

IE_GETMODE
Retrieves the current mode the control is in.

Parameters
wParam

Not used; must be 0.
lParam

Not used; must be 0.

Return Value
If successful, returns one of the following values indicating the current control mode:

Constant Description
IEMODE_READY The control is ready for inking, moving

strokes, tapping, resizing, and so on.
IEMODE_ERASE The control is set to erasing mode.
IEMODE_LASSO The control is set to lasso selection mode.

Otherwise, returns IER_PARAMERR to indicate that wParam or lParam is invalid.

See Also
IE_SETMODE

IE_GETMODIFY
Queries whether the contents of the control have been modified since the control was created.

Parameters
wParam

Not used; must be 0.
lParam

Not used; must be 0.

Return Value
Returns one of the following values:

Constant Description
IER_YES The control's contents have been modified.
IER_NO The control's contents have not been

modified.
IER_PARAMERR wParam or lParam is invalid.

Comments
This command succeeds regardless of the security setting.

See Also
IE_SETMODIFY

IE_GETNOTIFY
Retrieves the current notification options for the control.

Parameters
wParam

Not used; must be 0.
lParam

Not used; must be 0.

Return Value
If successful, returns the current notification bits, as listed here:

Constant Description
IEN_EDIT Require notifications of editing or command

events.
IEN_FOCUS Require notifications of focus events.
IEN_PAINT Require notifications of painting events.
IEN_PDEVENT Require notifications of pointing-device

events (clicks and taps).
IEN_PROPERTIES Require notifications before bringing up the

properties dialog box.
IEN_SCROLL Require notifications of scrolling events.

Otherwise, returns IER_PARAMERR to indicate that wParam or lParam is invalid.

See Also
IE_SETNOTIFY

IE_GETPAINTDC
Retrieves the handle to the device context (HDC), which is used to paint an ink edit control. This HDC
was supplied to the iedit control by BeginPaint; therefore, its clipping region is set according to those
portions of the iedit control that have been invalidated.

Parameters
wParam

Not used; must be 0.
lParam

Not used; must be 0.

Return Value
Returns the HDC if successful; otherwise, returns one of the following:

Constant Description
IER_PARAMERR wParam or lParam is invalid.
IER_NOTINPAINT Attempted IE_GETPAINTDC outside of paint

notification.

Comments
The application can send this message only when the parent window is processing one of the painting
notifications: IN_PREPAINT, IN_PAINT, IN_POSTPAINT, or IN_ERASEBKGND. An attempt to send it at
any other time will fail, returning IER_NOTINPAINT.

The clipping region is already appropriately set when sending IE_GETPAINTDC. The HDC is in the
MM_TEXT mapping mode. The HDC must not be released; the iedit control does this after returning from
the painting notification.

IE_GETPDEVENT
Retrieves the pointing-device event that triggered the IN_PDEVENT notification. This can be from a
mouse, pen, or other device.

Parameters
wParam

Not used; must be 0.
lParam

Address of a PDEVENT structure that is filled by the control when it receives this message.

Return Value
Returns one of the following:

Constant Description
IER_OK Success.
IER_PARAMERR wParam or lParam is invalid.
IER_NOPDEVENT No event occurred.

Comments
This message can succeed only during the processing of an IN_PDEVENT notification. At all other times
its use is invalid. The caller must initialize the cbSize member of the PDEVENT structure to
sizeof(PDEVENT) before sending this message.

The application can cause the event to be discarded by returning TRUE to the IN_PDEVENT notification.

See Also
IN_PDEVENT, PDEVENT

IE_GETPENTIP
Retrieves the default ink pen tip.

Parameters
wParam

Not used; must be 0.
lParam

Address of a PENTIP structure.

Return Value
Returns IER_OK if successful; otherwise, returns IER_PARAMERR to indicate that wParam or lParam is
invalid.

Comments
The PENTIP structure is filled with the current pen tip used for default inking.

See Also
PENTIP, IE_SETPENTIP

IE_GETRECOG
Retrieves the current recognition setting of the control.

Parameters
wParam

Not used; must be 0.
lParam

Not used; must be 0.

Return Value
If successful, returns the following recognition flags, which can be combined using the bitwise-OR
operator:

Constant Description
IEREC_ALL All recognition enabled.
IEREC_GESTURE Gesture recognition enabled.
IEREC_NONE Recognition disabled.

Otherwise, returns IER_PARAMERR to indicate that wParam or lParam is invalid.

Comments
Currently, IEREC_GESTURE and IEREC_ALL are equivalent.

See Also
IE_SETRECOG

IE_GETSECURITY
Retrieves the current security setting of the control.

Parameters
wParam

Not used; must be 0.
lParam

Not used; must be 0.

Return Value
If successful, returns the following security flags, which can be combined using the bitwise-OR operator:

Constant Description
IESEC_NOCOPY Copying not allowed.
IESEC_NOCUT Cutting, deleting, and clearing not allowed.
IESEC_NOPASTE Pasting disabled.
IESEC_NOUNDO Undo not permitted.
IESEC_NOINK Inking not allowed.
IESEC_NOERASE Erasing not allowed.
IESEC_NOGET The IE_GETINK message is disabled.
IESEC_NOSET The IE_SETINK message is disabled.

Otherwise, returns IER_SECURITY to indicate that the control has security pro-tection disallowing the
operation.

See Also
IE_SETSECURITY

IE_GETSEL
Retrieves the selection status of a particular stroke.

Parameters
wParam

Contains the zero-based index of the stroke whose selection status is queried.
lParam

Not used; must be 0.

Return Value
Returns one of the following values:

Constant Description
IER_YES The stroke is selected.
IER_NO The stroke is not selected.
IER_PARAMERR wParam or lParam is invalid.

See Also
IE_SETSEL

IE_GETSELCOUNT
Retrieves the number of selected strokes.

Parameters
wParam

Not used; must be 0.
lParam

Not used; must be 0.

Return Value
If successful, returns the number of selected strokes; otherwise, returns IER_PARAMERR to indicate that
wParam or lParam is invalid.

See Also
IE_GETSEL, IE_GETCOUNT

IE_GETSELITEMS
Retrieves a list of all selected strokes in the control.

Parameters
wParam

Size of the buffer passed in.
lParam

Address of a buffer of UINT variables that will be filled with the indices of the selected strokes in the
control. This buffer must be large enough to hold all requested indices. The application can ensure
this by first getting the number of selected strokes with the IE_GETSELCOUNT message and then
calculating the required size of the buffer.

Return Value
Returns IER_OK if successful; otherwise, returns IER_PARAMERR to indicate that wParam or lParam is
invalid.

See Also
IE_GETSELCOUNT

IE_GETSTYLE
Retrieves the current style attributes of an ink edit control.

Parameters
wParam

Not used; must be 0.
lParam

Not used; must be 0.

Return Value
If successful, returns the following current style bits:

Constant Description
IES_BORDER Border drawn around control.
IES_HSCROLL Horizontally scrollable control.
IES_VSCROLL Vertically scrollable control.
IES_OWNERDRAW Application will do all ink drawing.

Otherwise, returns IER_PARAMERR to indicate that wParam or lParam is invalid.

IE_SETAPPDATA
Sets the application data saved in the ink edit control.

Parameters
wParam

Not used; must be 0.
lParam

Data to be saved.

Return Value
Returns the previous contents of the application data area, if successful; otherwise, returns
IER_PARAMERR to indicate that wParam or lParam is invalid.

Comments
An application can save any DWORD value with the ink edit control. The control does not use this data.
The IE_SETAPPDATA and IE_GETAPPDATA messages provide the only means for an application to
interact with the data.

See Also
IE_GETAPPDATA

IE_SETBKGND
Sets the background painting options for the control.

Parameters
wParam

Specifies the background options, as given in the following list:
Constant Description
IEB_BIT_CENTER Center bitmap in control. The lParam

parameter contains bitmap.
IEB_BIT_STRETCH Stretch bitmap to fit control. The lParam

parameter contains bitmap.
IEB_BIT_TILE Tile supplied bitmap repeatedly in control.

The lParam parameter contains bitmap.
IEB_BIT_UL Align supplied bitmap to upper-left corner

in the control. (UL stands for "upper left.")
The lParam parameter contains bitmap.

IEB_BRUSH Use brush supplied in lParam.
IEB_DEFAULT Do default background (use

COLOR_WINDOW).
IEB_OWNERDRAW Parent will draw background.

lParam

Contains a handle to the background bitmap or a brush, or is NULL, according to the specified option
in wParam.

Return Value
Returns IER_OK if successful; otherwise, returns IER_PARAMERR to indicate that wParam or lParam is
invalid.

Comments
The application can change the background at any time. The control is synchro-nously repainted upon
any change.

The HBITMAP or HBRUSH handle, if there is one, becomes the property of the iedit control. The
application must make no further use of the handle if the message returns IER_OK. If the
IEB_OWNERDRAW option is selected, the parent window must process the IN_ERASEBKGND
notification. If an application must place such objects as icons or metafiles in the background, it must do
so either in an owner-draw capacity or during the IN_PREPAINT notification.

See Also
IE_GETBKGND, IE_GETGRIDPEN, IE_SETGRIDPEN

IE_SETDRAWOPTS
Sets the ink drawing option.

Parameters
wParam

Contains the drawing option.
Constant Description
IEDO_FAST Drawing is done as fast as possible. This

is the default setting.
IEDO_NONE No drawing is done (disabled drawing).
IEDO_SAVEUPSTROK
ES

Save pen-up strokes in the HPENDATA
object.

lParam

Not used; must be 0.

Return Value
Returns IER_OK if successful; the previous draw option is returned in the high-order word; otherwise,
returns one of the following:

Constant Description
IER_PARAMERR wParam or lParam is invalid.
IER_OWNERDRAW The control is an owner-draw control; setting

draw options is invalid.
IER_SECURITY The control has security protection

disallowing the operation.

Comments
Unlike using the WM_SETREDRAW message, IEDO_NONE controls only the drawing of the ink. The
control's background, grid lines, and so forth are redrawn as usual. By default, pen-up strokes are not
saved in the HPENDATA object.

IE_SETERASERTIP
Sets the eraser pen tip.

Parameters
wParam

Not used; must be 0.
lParam

Address of a PENTIP structure.

Return Value
Returns IER_OK if successful; otherwise, returns IER_PARAMERR to indicate that wParam or lParam is
invalid.

Comments
The pen tip specified by PENTIP is used for erasing in the control.

See Also
PENTIP, IE_GETERASERTIP

IE_SETFORMAT
Sets the format of a stroke or a set of strokes in an ink edit control.

Parameters
wParam

Not used; must be 0.
lParam

Address of a STRKFMT structure.

Return Value
Returns IER_OK if successful; otherwise, returns one of the following:

Constant Description
IER_ERROR Unknown error.
IER_PARAMERR wParam or lParam is invalid. Also returned

when there is an invalid stroke index and the
IESF_STROKE option is specified in the iesf
member of the STRKFMT structure.

IER_MEMERR A memory error occurred.
IER_SECURITY The control has security protection

disallowing the operation.
IER_SELECTION No valid selection with the

IESF_SELECTION option in the iesf
member of the STRKFMT structure.

Comments
The stroke or strokes indicated by the STRKFMT structure are modified as indicated and repainted
(unless drawing has been turned off using the IEDO_NONE bit in IE_SETDRAWOPTS).

The iesf member of the STRKFMT structure contains the IESF_TIPCOLOR or IESF_TIPWIDTH bit flags
to selectively adjust the color or width attributes of the ink. This allows setting only the color, for example,
while leaving the width unchanged. If the value in iesf has either IESF_TIPCOLOR or IESF_TIPWIDTH
set, the ink in the control adopts the new color or width given in the rgb or bwidth members of the
PENTIP structure identified in the tip member of STRKFMT.

The caller must initialize the cbSize member of the STRKFMT structure to sizeof(STRKFMT) before
sending this message.

See Also
IE_GETFORMAT, IE_SETDRAWOPTS, STRKFMT

IE_SETGRIDORIGIN
Sets the origin of the rules or grid lines.

Parameters
wParam

Not used; must be 0.
lParam

The low-order word has the x-coordinate of the origin and the high-order word has the y-coordinate of
the origin.

Return Value
Returns IER_OK if successful; otherwise, returns IER_PARAMERR to indicate that wParam or lParam is
invalid.

Comments
Rules and grids are painted after the background and before the ink (and the IN_PREPAINT notification),
and are treated separately from both.

The default setting is for no grid lines. The grid lines act purely as guides for the user; the ink does not
interact with the grid in any way. The specification of the grid lines is in the MM_TEXT mapping mode
(that is, display pixel).

See Also
IE_GETBKGND, IE_GETGRIDPEN, IE_GETGRIDSIZE, IE_SETGRIDORIGIN, IE_SETGRIDPEN,
IE_SETGRIDSIZE, IE_SETBKGND

IE_SETGRIDPEN
Sets the GDI pen for the background rules or grid lines.

Parameters
wParam

Not used; must be 0.
lParam

Contains a handle to a GDI pen used to draw the grid lines.

Return Value
Returns IER_OK if successful; otherwise, returns IER_PARAMERR to indicate that wParam or lParam is
invalid.

Comments
Rules and grids are painted after the background and before the ink (and the IN_PREPAINT notification),
and are treated separately from both. A GDI pen, if specified, becomes the property of the ink edit control
and must not be deleted or otherwise used by the application. If the application needs to change the
settings, it must create a new pen each time it sends the IE_SETGRIDPEN message.

The default setting is for no grid lines. The grid lines act purely as guides for the user; the ink does not
interact with the grid in any way. The specification of the grid lines is in the MM_TEXT mapping mode
(that is, display pixel). If the GDI pen handle is NULL, the ink edit control will use a default pen. (The
default pen attributes are a solid line, a width of 1 pixel, and the window grayed text color.) The maximum
grid spacing is 255 pixels.

See Also
IE_GETBKGND, IE_GETGRIDORIGIN, IE_GETGRIDPEN, IE_GETGRIDSIZE, IE_SETGRIDORIGIN,
IE_SETGRIDSIZE, IE_SETBKGND

IE_SETGRIDSIZE
Sets the vertical and horizontal spacing of the rules or grid lines.

Parameters
wParam

Not used; must be 0.
lParam

The low-order word has the horizontal spacing and the high-order word has the vertical spacing.

Return Value
Returns IER_OK if successful; otherwise, returns IER_PARAMERR to indicate that wParam or lParam is
invalid.

Comments
Rules and grids are painted after the background and before the ink (and the IN_PREPAINT notification),
and are treated separately from both.

The default setting is for no grid lines. The grid lines act purely as guides for the user; the ink does not
interact with the grid in any way. The specification of the grid lines is in the MM_TEXT mapping mode
(that is, display pixel).

See Also
IE_GETBKGND, IE_GETGRIDORIGIN, IE_GETGRIDPEN, IE_GETGRIDSIZE, IE_SETGRIDORIGIN,
IE_SETGRIDPEN, IE_SETBKGND

IE_SETINK
Sets the contents of an ink edit control.

Parameters
wParam

Contains IESI_REPLACE to replace any existing control contents with the supplied ink, or
IESI_APPEND to append the supplied ink to the existing contents of the ink edit control.

lParam

Contains a handle to pen data with which to initialize or reinitialize the contents of the control. If
NULL, the contents of the control are cleared; any pen data in the control is discarded.

Return Value
Returns IER_OK if successful; otherwise, returns one of the following:

Constant Description
IER_PARAMERR wParam or lParam is invalid.
IER_MEMERR A memory error occurred.
IER_SECURITY The control has security protection

disallowing the operation.
IER_SCALE Attempted to merge ink of incompatible scale

factors.

Comments
The application can clear or change the contents of the control at any time with this function. During the
creation of controls with existing contents, this message might be sent in response to the WM_CTLINIT
message.

The HPENDATA handle becomes the property of the control; the application must make no further use of
the handle if the message returns success. On a merge operation, the original HPENDATA is destroyed
following a successful merge. If the result of IE_SETINK indicates there is no ink left in the control, the
mode is reset to IEMODE_READY if the previous mode was either IEMODE_ERASE or
IEMODE_LASSO. The corresponding IN_MODECHANGED notification is also sent at this time.

See Also
IE_GETINK

IE_SETINKINPUT
Sets the ink input options for an ink edit control.

Parameters
wParam

Consists of one or two flags specifying the new ink input option. Any one of the following flags can be
used as the wParam value. If IEI_MOVE is specified, one (and only one) additional value can
combined to indicate a secondary option if all ink will not fit inside the control when moved. For
example, the combi-nation IEI_MOVE|IEI_RESIZE specifies to move ink into the control and resize the
control to fit if necessary. Bitwise-OR combinations of constants not including IEI_MOVE are not valid.

Constant Description
IEI_MOVE Move all ink inside the control.
IEI_RESIZE Resize all ink to fit inside the control.
IEI_CROP Crop all ink that falls outside the control.
IEI_DISCARD Discard all ink if any falls outside the control.

lParam

Not used; must be 0.

Return Value
Returns the previous ink input bits if successful; otherwise, returns IER_PARAMERR to indicate that
wParam or lParam is invalid.

Comments
An application can dynamically modify the ink input options. If more than 1 bit is set, the order of priority is
as listed in the previous table.

See Also
IE_GETINKINPUT

IE_SETMODE
Sets the control to a particular mode.

Parameters
wParam

Specifies the mode to set the control to, as follows:
Constant Description
IEMODE_READY The control is ready for inking, moving

strokes, tapping, and so forth.
IEMODE_ERASE The control is set to erasing mode.
IEMODE_LASSO The control is set to lasso selection mode.

lParam

Not used; must be 0.

Return Value
Returns one of the following values:

Constant Description
IER_OK Success.
IER_PARAMERR wParam or lParam is invalid.
IER_PENDATA Attempted to set erase or lasso mode with a

null HPENDATA handle in the control.

See Also
IE_GETMODE

IE_SETMODIFY
Sets the modify bit in the control, indicating whether the contents of the control have been modified.

Parameters
wParam

The new value of the modify bit. Must be either TRUE or FALSE.
lParam

Not used; must be 0.

Return Value
Returns IER_OK if successful; otherwise, returns IER_PARAMERR to indicate that wParam or lParam is
invalid.

Comments
The modify bit is set in the control whenever the user takes some action that changes the ink in the
control. Such actions include drawing new ink, erasing, pasting, changing attributes, and moving ink. Note
that calling a function to change the contents of the control also sets the modify bit.

To preserve the value of the modify bit during some modifying action, the appli-cation must first retrieve
the bit's value with IE_GETMODIFY, then restore the value after completing the action.

This command succeeds regardless of the security setting.

See Also
IE_GETMODIFY

IE_SETNOTIFY
Sets the notification options for an ink edit control.

Parameters
wParam

Consists of flags specifying the kinds of notifications required:
Constant Description
IEN_EDIT Require notifications of editing or command

events. Notifications sent: IN_CHANGE,
IN_UPDATE, IN_GESTURE,
IN_COMMAND.

IEN_FOCUS Require notifications of focus events.
Notifications sent: IN_SETFOCUS,
IN_KILLFOCUS.

IEN_PAINT Require notifications of painting events.
Notifications sent: IN_PREPAINT,
IN_POSTPAINT.

IEN_PDEVENT Require notifications of pointing-device
events (clicks and taps). Notification sent:
IN_PDEVENT.

IEN_PROPERTIES Require notifications before bringing up the
properties dialog box. Notification sent:
IN_PROPERTIES.

IEN_SCROLL Require notifications of scrolling events.
Notifications sent: IN_HSCROLL,
IN_VSCROLL.

lParam

Not used; must be 0.

Return Value
Returns the previous notification bits if successful; otherwise, returns IER_PARAMERR to indicate that
wParam or lParam is invalid.

Comments
An application can dynamically modify the kinds of notifications and the frequency with which they are
generated.

Unless otherwise specified, the parent window receives no notifications beyond the default messages
sent by Windows to the parent of a child window.

See Also
IE_GETNOTIFY

IE_SETPENTIP
Sets the default ink pen tip.

Parameters
wParam

Not used; must be 0.
lParam

Address of a PENTIP structure.

Return Value
Returns IER_OK if successful; otherwise, returns IER_PARAMERR to indicate that wParam or lParam is
invalid.

Comments
The pen tip specified by PENTIP is used for all default inking in the control. Note that the new pen tip
applies only to new ink entered into the control. It does not change the attributes of existing ink in the
control.

See Also
PENTIP, IE_GETPENTIP

IE_SETRECOG
Sets the recognition options of the control.

Parameters
wParam

Contains bits designating the new recognition options, as listed here:
Constant Description
IEREC_ALL All recognition enabled.
IEREC_GESTURE Gesture recognition enabled.
IEREC_NONE Recognition disabled.

lParam

Not used; must be 0.

Return Value
Returns the previous recognition bits if successful; otherwise, returns IER_PARAMERR to indicate that
wParam or lParam is invalid.

Comments
By default, all recognition is enabled. Currently, IEREC_GESTURE and IEREC_ALL are equivalent.

See Also
IE_GETRECOG

IE_SETSECURITY
Sets the security options of the control.

Parameters
wParam

Contains the new security bits. The high-order word is unused and must be 0. The security flags can
be combined using the bitwise-OR operator.

Constant Description
IESEC_NOCOPY Copying not allowed.
IESEC_NOCUT Cutting, deleting, and clearing not

allowed.
IESEC_NOPASTE Pasting disabled.
IESEC_NOUNDO Undo not permitted.
IESEC_NOINK Inking not allowed.
IESEC_NOERASE Erasing not allowed.
IESEC_NOGET The IE_GETINK message is disabled.
IESEC_NOSET The IE_SETINK message is disabled.

lParam

Not used; must be 0.

Return Value
Returns the previous security bits if successful; otherwise, returns one of the following:

Constant Description
IER_PARAMERR wParam or lParam is invalid.
IER_SECURITY The control has security protection

disallowing the operation.

See Also
IE_GETSECURITY

IE_SETSEL
Sets the selection status of a particular stroke.

Parameters
wParam

Contains the zero-based index of the stroke whose selection status is to be set. A value of IX_END
sets the selection status of all the strokes in the control.

lParam

lParam is TRUE to select the stroke or FALSE to remove the selection. Other values produce an
IER_PARAMERR return value.

Return Value
Returns one of the following values:

Constant Description
IER_YES The stroke was previously selected.
IER_NO The stroke was not previously selected.
IER_PARAMERR wParam or lParam is invalid.

Comments
This message affects the selection status of only the specified stroke. The selection status of other
strokes remains unchanged.

See Also
IE_GETSEL

IN_CHANGE
Sent after the contents of the control have been modified and repainted.

The control's parent window receives this notification message through a WM_COMMAND message if
the IEN_EDIT bit has been set using the IE_SETNOTIFY message.

Parameters
wParam

Specifies the identifier of the ink edit control.
lParam

Specifies the handle of the iedit control in the low-order word and the IN_CHANGE notification
message in the high-order word.

See Also
IE_SETNOTIFY

IN_CLOSE
Sent when the control is closing and about to be destroyed.

The control's parent window receives this notification message through a WM_COMMAND message.

Parameters
wParam

Specifies the identifier of the ink edit control.
lParam

Specifies the handle of the iedit control in the low-order word and the IN_CLOSE notification message
in the high-order word.

Return Value
The application should return TRUE to prevent the control from being closed or FALSE for default
handling.

IN_COMMAND
Sent when the user has selected an item from the pop-up menu.

The control's parent window receives this notification message through a WM_COMMAND message if
the IEN_EDIT bit has been set using the IE_SETNOTIFY message.

Parameters
wParam

Specifies the identifier of the ink edit control.
lParam

Specifies the handle of the iedit control in the low-order word and the IN_COMMAND notification
message in the high-order word.

Return Value
The application should return TRUE to discard the command selection or FALSE for default processing.

Comments
The application can retrieve details about the selection by using the IE_GETCOMMAND message.

See Also
IE_GETCOMMAND, IE_SETNOTIFY

IN_ERASEBKGND
Sent to the parents of ink edit controls that have the IEB_OWNERDRAW option to request the painting of
the control background.

The control's parent window receives this notification message through a WM_COMMAND message.

Parameters
wParam

Specifies the identifier of the ink edit control.
lParam

Specifies the handle of the ink edit control in the low-order word and the IN_ERASEBKGND
notification message in the high-order word.

Comments
The application should use the IE_GETPAINTDC message to retrieve such information as the correct
device context and clipping region.

See Also
IE_GETPAINTDC

IN_GESTURE
Sent when the user has performed a gesture in the iedit control.

The control's parent window receives this notification message through a WM_COMMAND message if
the IEN_EDIT bit has been set using the IE_SETNOTIFY message.

Parameters
wParam

Specifies the identifier of the ink edit control.
lParam

Specifies the handle of the ink edit control in the low-order word and the IN_GESTURE notification
message in the high-order word.

Return Value
The application should return TRUE to discard the gesture or FALSE for default processing.

Comments
An application can retrieve details about the gesture by using the IE_GETGESTURE message.

See Also
IE_SETNOTIFY

IN_HSCROLL
The IN_HSCROLL notification message is sent when the user has clicked the ink edit control's horizontal
scroll bar.

The control's parent window receives this notification message through a WM_COMMAND message if
the IEN_SCROLL bit has been set using the IE_SETNOTIFY message. This bit is set by default and
should be cleared if the control's parent does not require this notification message.

Parameters
wParam

Specifies the identifier of the ink edit control.
lParam

Specifies the handle of the ink edit control in the low-order word and the IN_HSCROLL notification
message in the high-order word.

Return Value
The application should return TRUE to discard the scrolling request.

See Also
IE_SETNOTIFY

IN_KILLFOCUS
Sent to inform the parent window that the control is losing the focus.

The control's parent window receives this notification message through a WM_COMMAND message if
the IEN_FOCUS bit has been set using the IE_SETNOTIFY message. This bit is set by default and
should be cleared if the control's parent does not require this notification message.

Parameters
wParam

Specifies the identifier of the ink edit control.
lParam

Specifies the handle of the iedit control in the low-order word and the IN_KILLFOCUS notification
message in the high-order word.

Return Value
The application should return TRUE to prevent the control from losing the focus.

See Also
IE_SETNOTIFY

IN_MEMERR
Sent when the system is unable to satisfy a memory request made by the control.

The control's parent window receives this notification message through a WM_COMMAND message.

Parameters
wParam

Specifies the identifier of the ink edit control.
lParam

Specifies the handle of the ink edit control in the low-order word and the IN_MEMERR notification
message in the high-order word.

Return Value
The application should return TRUE to retry the operation (generally after it frees memory). If it returns
TRUE and the control still cannot perform the memory operation, another IN_MEMERR notification is
generated.

Comments
The ink edit control does not display an error message of any kind. Any such error messages must be
displayed by the application.

IN_MODECHANGED
Sent after the control mode has changed.

The control's parent window receives this notification message through a WM_COMMAND message if
the IEN_EDIT bit has been set using the IE_SETNOTIFY message.

Parameters
wParam

Specifies the identifier of the ink edit control.
lParam

Specifies the handle of the ink edit control in the low-order word and the IN_MODECHANGED
notification message in the high-order word.

See Also
IE_SETNOTIFY, IE_GETMODE, IE_SETMODE

IN_PAINT
Sent to the parent window of an owner-draw ink edit control to indicate that the control should be painted.

The control's parent window receives this notification message through a WM_COMMAND message.

Parameters
wParam

Specifies the identifier of the ink edit control.
lParam

Specifies the handle of the ink edit control in the low-order word and the IN_PAINT notification
message in the high-order word.

Comments
The application should use the IE_GETPAINTDC message to retrieve the details of the required painting.

See Also
IE_GETPAINTDC

IN_PDEVENT
Sent when a pointing-device transition event (such as a tap, up-click, or double-tap) occurs.

The control's parent window receives this notification message through a WM_COMMAND message if
the IEN_PDEVENT bit has been set using the IE_SETNOTIFY message.

Parameters
wParam

Specifies the identifier of the ink edit control.
lParam

Specifies the handle of the ink edit control in the low-order word and the IN_PDEVENT notification
message in the high-order word.

Return Value
The application should return TRUE to discard the event, or FALSE for normal processing.

Comments
The application can retrieve a PDEVENT structure describing the event by sending the
IE_GETPDEVENT message.

See Also
IE_GETPDEVENT, IE_SETNOTIFY

IN_POSTPAINT
Sent to inform the parent that painting is finished.

The control's parent window receives this notification message through a WM_COMMAND message if
the IEN_PAINT bit has been set using the IE_SETNOTIFY message.

Parameters
wParam

Specifies the identifier of the ink edit control.
lParam

Specifies the handle of the ink edit control in the low-order word and the IN_POSTPAINT notification
message in the high-order word.

Comments
The application can send the IE_GETPAINTDC message to retrieve a device con-text with the correct
clipping region to perform any additional painting on top of the ink edit control.

See Also
IE_GETPAINTDC, IE_SETNOTIFY

IN_PREPAINT
Sent just before the control paints the ink.

The control's parent window receives this notification message through a WM_COMMAND message if
the IEN_PAINT bit has been set using the IE_SETNOTIFY message.

Parameters
wParam

Specifies the identifier of the ink edit control.
lParam

Specifies the handle of the ink edit control in the low-order word and the IN_PREPAINT notification
message in the high-order word.

Comments
The application can send the IE_GETPAINTDC message to retrieve a device context with the correct
clipping region to perform any additional painting before the ink edit control paints.

See Also
IE_GETPAINTDC, IE_SETNOTIFY

IN_PROPERTIES
Signals the iedit control's standard Properties dialog box is about to be displayed on the screen.

The control's parent window receives the IN_PROPERTIES notification message through a
WM_COMMAND message if the IEN_PROPERTIES bit has been set using the IE_SETNOTIFY
message. This bit is set by default and should be cleared if the control's parent does not require this
notification message.

Parameters
wParam

Specifies the identifier of the ink edit control.
lParam

Specifies the handle of the ink edit control in the low-order word and the IN_PROPERTIES
notification message in the high-order word.

Return Value
The application should return TRUE to avoid displaying the iedit control's standard Properties dialog box.

See Also
IE_SETNOTIFY

IN_SETFOCUS
Sent to inform the parent window that the control is gaining the focus.

The control's parent window receives this notification message through a WM_COMMAND message if
the IEN_FOCUS bit has been set using the IE_SETNOTIFY message. This bit is set by default and
should be cleared if the control's parent does not require this notification message.

Parameters
wParam

Specifies the identifier of the ink edit control.
lParam

Specifies the handle of the ink edit control in the low-order word and the IN_SETFOCUS notification
message in the high-order word.

Return Value
The application should return TRUE to prevent acquiring the focus.

See Also
IE_SETNOTIFY

IN_UPDATE
Sent when the contents of the control have been modified but not yet repainted.

The control's parent window receives this notification message through a WM_COMMAND message if
the IEN_EDIT bit has been set using the IE_SETNOTIFY message.

Parameters
wParam

Specifies the identifier of the ink edit control.
lParam

Specifies the handle of the ink edit control in the low-order word and the IN_UPDATE notification
message in the high-order word.

See Also
IE_SETNOTIFY

IN_VSCROLL
Sent when the user has clicked the ink edit control's vertical scroll bar.

The control's parent window receives this notification message through a WM_COMMAND message if
the IEN_SCROLL bit has been set using the IE_SETNOTIFY message. This bit is set by default and
should be cleared if the control's parent does not require this notification message.

Parameters
wParam

Specifies the identifier of the ink edit control.
lParam

Specifies the handle of the ink edit control in the low-order word and the IN_VSCROLL notification
message in the high-order word.

Return Value
The application should return TRUE to discard the scrolling request.

See Also
IE_SETNOTIFY

PE_BEGINDATA
Sent to the window specified by the htrgTarget member of the TARGET structure the first time any pen
data is directed toward that window. Submessage of WM_PENEVENT.

Parameters
wParam

PE_BEGINDATA
lParam

Address of a TARGET structure.

Comments
A target window can initialize the dwData member of the TARGET structure with a handle to pen data
(HPENDATA), a handwriting recognition object (HRC), or some private data type. If dwData is an
HPENDATA object, the HPENDATA object should be in standard scale with no OEM data. For example,
the HPENDATA object can be created as follows:

CreatePenDataEx(NULL, PDTS_STANDARDSCALE, CPD_TIME, 0);

The target window informs Windows of the type of data in the dwData member of the TARGET structure
by returning LRET_HPENDATA, LRET_HRC, or LRET_PRIVATE (or LRET_DONE). If the application lets
the message fall down to the Windows DefWindowProc function, then the function creates a handwriting
recognition object (HRC) for this target.

The window can ignore all input except gestures. In this case, it must create a handwriting recognition
object and customize it to recognize only gestures.

For an example of how an application can handle PE_BEGINDATA, see the source code for PENAPP.C
in Chapter 7, "A Sample Pen Application."

See Also
TARGET, WM_PENEVENT

PE_BEGININPUT
Begins default input processing. Submessage of WM_PENEVENT.

Parameters
wParam

PE_BEGININPUT
lParam

The high-order word is the handle of the window in which the pen first touched down, and the low-
order word is the event reference identifier returned from GetMessageExtraInfo.

Return Value
Returns PCMR_OK if successful; otherwise, it returns one of the following values:

Constant Description
PCMR_ALREADYCOLLECTING StartPenInput has already been

called for this session.
PCMR_APPTERMINATED The application terminated input.
PCMR_ERROR Parameter or unspecified error.
PCMR_INVALID_PACKETID A packet identifier is invalid.
PCMR_SELECT Press-and-hold action was

detected. Collection is not started.
PCMR_TAP A tap was detected. Collection is

not started.

Comments
A control can initiate default pen-input processing by sending this message to its parent. If the parent
allows the message to be processed by passing it to DefWindowProc, default pen-input behavior begins.
The DoDefaultPenInput function uses this technique.

For further information about default processing, refer to Chapter 2, "Starting Out with System Defaults."

See Also
DoDefaultPenInput, WM_PENEVENT

PE_BUFFERWARNING
Generated by the pen driver component of the system when the input queue is approximately half full.
When an application receives PE_BUFFERWARNING, it should immediately call GetPenInput to drain
the input queue. Submessage of WM_PENEVENT.

Parameters
wParam

PE_BUFFERWARNING.
lParam

Extra information encapsulating a reference to the event and the HPCM that generated it.
Applications can use the EventRefFromWpLp and HpcmFromWpLp macros to retrieve these
values.

Comments
If an application receives this message, it has fallen behind in processing the input. The buffer is in
danger of overflowing. The application should repeatedly call GetPenInput to gather the unprocessed
pen input.

See Also
GetPenInput, WM_PENEVENT

PE_ENDDATA
Sent at the termination of pen input to all windows specified by the htrgTarget member of the TARGET
structure that have received a PE_BEGINDATA message. Submessage of WM_PENEVENT.

Parameters
wParam

PE_ENDDATA.
lParam

Address of a TARGET structure.

Comments
A target can inform the recognizer that pen input has ended and process the HRC in response to this
message. If this message is allowed to fall through to the DefWindowProc function, default result
processing is done if the value in the dwData member of the TARGET structure is of type HRC.
EndPenInput is called followed by a call to ProcessHRC. Then the PE_RESULT submessage is sent to
the target to allow the target to get results and process them.

If the dwData member of the TARGET structure has the HPENDATA or HRC type, the object is
destroyed by DefWindowProc on completion of results processing.

See Also
TARGET, WM_PENEVENT

PE_ENDINPUT
Sent to indicate that the default collection has terminated. Submessage of WM_PENEVENT.

Parameters
wParam

PE_ENDINPUT.
lParam

Not used.

See Also
WM_PENEVENT

PE_GETINKINGINFO
Fills an INKINGINFO structure. Submessage of WM_PENEVENT.

Parameters
wParam

PE_GETINKINGINFO.
lParam

Address of an INKINGINFO structure, which is initialized with default values.

Return Value
The targeted windows in the application should return 1 to customize inking information. A return value of
0 results in default inking behavior.

Comments
Before beginning default pen input, Windows sends PE_GETINKINGINFO to all the windows specified by
the htrgTarget member of the TARGET structure. (The TARGET structure is part of the TARGINFO
structure created during processing of the earlier PE_SETTARGETS messages.)

The default values are the same as those used when StartInking is called with lpinkinginfo set to NULL,
but the PII_SAVEBACKGROUND flag is forced on in the wFlags member of the INKINGINFO structure to
automatically save and restore the inking background.

The hrgnClip member of the INKINGINFO structure temporarily contains the index of the target in the
TARGINFO structure retrieved by the PE_SETTARGETS message. Note that this is an overloading of this
member to identify the targets. If the htrgTarget window specified in the TARGET structure returns 1 to
this message, the following actions are taken:

· If both the PII_INKPENTIP and PII_RECTCLIP flags are set, the pen tip specified by the tip member
of the INKINGINFO structure is saved and used whenever the pen goes down within the area defined
by the rectClip member. In most cases, the ink color changes at or near the clipping boundary, even
when the pen is dragged over it. Because inking is done on a per-segment basis, there may be a
slight overlap of color near a common boundary.

· If the width given in the tip member is 0, no ink will appear within the area specified by the rectClip
member. Password fields can be implemented using this technique.

· If the PII_SAVEBACKGROUND flag is clear (0), any ink dropped within the area specified by the
rectClip member is not removed at the termination of the collection. The ink edit control, for example,
uses this technique. However, the parent window can override this default behavior when it finally
receives a PE_GETINKINGINFO message after all its targets have been called.

· If the PII_INKSTOP flag is set, the rectInkStop member is folded into the region specified by the
hrgnInkStop member, which is used in calls to the StartInking function. When inking stops due to a
pen-down event in the rectInkStop rectangle, a WM_PENMISC message with the PMSC_INKSTOP
submessage is sent to the window specified by the htrgTarget member of the TARGET structure.
lParam is the same as in the PE_PENDOWN message that caused the inking to stop. As with
PII_SAVEBACKGROUND, hwnd can override the preprocessed values accumulated by the targets.

For further information about PE_GETINKINGINFO, see Chapter 2, "Starting Out with System Defaults."

See Also
INKINGINFO, PE_SETTARGETS, StartInking, TARGET, TARGINFO, WM_PENEVENT

PE_GETPCMINFO
Fills a PCMINFO structure, which is then used in a call to StartPenInput. Submessage of
WM_PENEVENT.

Parameters
wParam

PE_GETPCMINFO.
lParam

Address of a PCMINFO structure, which is initialized with default values.

Comments
The default values are the same as those applied when StartPenInput is called with the lppcminfo
parameter set to NULL:

· Inking terminates when the time-out period elapses.
· Inking terminates when a tap occurs outside the client rectangle of hwnd.
· Inking does not start if the initial pen input consists of a press-and-hold gesture.

However, an exclusion region specified by the hrgnExclude member of the PCMINFO structure may
have accumulated while processing PE_SETTARGETS messages. The window procedure can modify
the values to customize the collection parameters before pen input begins.

If the PCM_DOPOLLING flag in the dwPcm member of the PCMINFO structure is set, it is disregarded
and pen input remains in event mode.

See Also
PCMINFO, PE_SETTARGETS, StartPenInput, WM_PENEVENT

PE_MOREDATA
Sent to the window specified by the htrgTarget member of the TARGET structure to indicate that more
pen data is available for that window. Submessage of WM_PENEVENT.

Parameters
wParam

PE_MOREDATA.
lParam

Address of an INPPARAMS structure.

Comments
DefWindowProc collects the pen input in response to the PE_PENDOWN, PE_PENUP, and
PE_PENMOVE messages and sends the input on a stroke-by-stroke basis to one of the targets in the
TARGINFO structure. On a pen-tip transition¾that is, from pen-down to pen-up or vice versa ¾ the
Windows DefWindowProc function sends a PE_MOREDATA message to the window specified by the
htrgTarget member of the TARGET structure identified in the PE_BEGINDATA message.

If it receives a PE_MOREDATA message, DefWindowProc uses AddPointsPendata or
AddPenInputHRC, or does nothing, depending on whether the data type in the dwData member of the
TARGET structure is a handle to an HPENDATA, an HRC handle for handwriting recognition, or some
private data type.

See Also
AddPenInputHRC, AddPointsPendata, INPPARAMS, PE_PENMOVE, PE_PENDOWN, PE_PENUP,
TARGET, TARGINFO, WM_PENEVENT

PE_PENDOWN
Generated by the pen driver component of the system when the pen tip touches the tablet surface.
Submessage of WM_PENEVENT.

Parameters
wParam

PE_PENDOWN.
lParam

Extra information encapsulating a reference to the event and the HPCM that generated it.
Applications can use the EventRefFromWpLp and HpcmFromWpLp macros to retrieve these
values.

See Also
WM_PENEVENT

PE_PENMOVE
Generated by the pen driver component of the system when the pen moves, forcing more packets into the
input queue. Submessage of WM_PENEVENT.

Parameters
wParam

PE_PENMOVE.
lParam

Extra information encapsulating a reference to the event and the HPCM that generated it.
Applications can use the EventRefFromWpLp and HpcmFromWpLp macros to retrieve these
values.

Comments
This message is analogous to WM_MOUSEMOVE. It provides notification that the pen is moving. Like its
mouse counterpart, PE_PENMOVE messages are coalesced so that only a single such message exists
in the application's message queue. How-ever, the event the message represents is the first of these
coalesced events, not the last event, as is the case with WM_MOUSEMOVE.

An application need not handle this message if transition events like PE_PENUP and PE_PENDOWN are
sufficient notification. PE_PENMOVE is useful when an application must monitor pen movement with
greater frequency than PE_PENUP or PE_PENDOWN allows.

See Also
WM_PENEVENT

PE_PENUP
Generated by the pen driver component of the system when the pen tip leaves the tablet surface.
Submessage of WM_PENEVENT.

Parameters
wParam

PE_PENUP.
lParam

Extra information encapsulating a reference to the event and the HPCM that generated it.
Applications can use the EventRefFromWpLp and HpcmFromWpLp macros to retrieve these
values.

See Also
WM_PENEVENT

PE_RESULT
During the processing of the PE_ENDDATA submessage, sent to all windows specified by the htrgTarget
member of the TARGET structure that have received a PE_BEGINDATA message. PE_RESULT applies
only to recognition and is sent only if the value in the dwData member of the TARGET structure is of type
HRC. Submessage of WM_PENEVENT.

Parameters
wParam

PE_RESULT.
lParam

HRC object for the recognition session.

Comments
A target can perform recognition-result processing in response to PE_RESULT. If it receives this
message, the Windows DefWindowProc function performs default result processing. The first
HRCRESULT object for the HRC is obtained using the GetResultsHRC function. The HRCRESULT
handle is used to retrieve a string of symbols that are converted, one by one, into characters. The
characters are then posted as WM_CHAR messages to the window specified by the htrgTarget member
of the TARGET structure.

The clear, cut, copy, paste, and undo gestures are converted to WM_CLEAR, WM_CUT, WM_COPY,
WM_PASTE, and WM_UNDO messages. They are posted to the htrgTarget target, together with
appropriate mouse messages, so that the target can perform appropriate processing (such as selection)
before applying the gestures.

See Also
TARGET, WM_PENEVENT

PE_SETTARGETS
Sent to an application window so that it can set its own targeting structure. Submessage of
WM_PENEVENT.

Parameters
wParam

PE_SETTARGETS.
lParam

Address of a far pointer to a TARGINFO structure. (Note that lParam is a pointer to a pointer.)

Return Value
The application should return LRET_DONE to indicate that it has set up the targeting information for the
child windows. A return of 0 indicates that the application is the only target. The application can also
return LRET_ABORT to abort the targeting process altogether.

Comments
The DefWindowProc function enumerates all the descendants of the window specified in its first
parameter and sends each one a PE_GETPCMINFO message. For every descendant that returns 1 to
this message, the PCM_RECTBOUND and PCM_RECTEXCLUDE flags of the PCMINFO structure are
examined. If the PCM_RECTBOUND flag is set, the descendant is included in the list of potential targets
and the rectBound member in PCMINFO is copied to the rectBound member of the TARGET structure.
If the PCM_RECTEXCLUDE flag is set, the rectExclude member of PCMINFO is added to an exclusion
region that is passed (as the hrgnExclude member of the PCMINFO structure) to the StartInput call. If
there are no descendants, or if the window procedure of hwnd returns 0, a TARGINFO structure is
constructed with hwnd as the single target.

For default processing behavior, the application should allow PE_SETTARGETS to fall through to
DefWindowProc. A PE_GETPCMINFO message will follow to establish targets or termination conditions
(buttons, for example).

For further information about PE_SETTARGETS, see Chapter 2, "Starting Out with System Defaults."

An application can replace the default targeting with a set of targets it defines itself. In this case, the
application allocates enough memory for the TARGINFO structure plus all the TARGET structures.

Example
The following example illustrates how to handle PW_SETTARGETS for n targets, where each target is in
the array rgHwnd. Notice the code increases the allocation by n-1 TARGET structures, since TARGINFO
already contains one TARGET structure.

DWORD cbAlloc = sizeof(TARGINFO) + (n-1) * sizeof(TARGET);
HGLOBAL hTargets = GlobalAlloc(GHND, cbAlloc);
LPTARGINFO lptarginfo = GlobalLock(hTargets);

lptarginfo->cbSize = sizeof(TARGINFO);
lptarginfo->cTargets = n; // Number of targets
lptarginfo->htrgOwner = HtrgFromHwnd(hwnd); // Macro in penwin.h
lptarginfo->dwFlags = TPT_TEXTUAL; // For text

for (i = 0; i < n; i++)
{

HWND hwnd = (HTRG)rgHwnd[i]; // Window of this target

lptarginfo->rgTarget[i].dwFlags = 0; // Reserved
lptarginfo->rgTarget[i].idTarget = i;
lptarginfo->rgTarget[i].htrgTarget = HtrgFromHwnd(hwnd);
lptarginfo->rgTarget[i].dwData = 0;

// Use screen coords of each window:

 {
// Note: rectBound is a RECTL. In 16-bit code, one has to assign each
// field separately. In 32-bit code, you can use the rectBound directly.
 RECT rect;

GetClientRect(hwnd, &rect);
ClientToScreen(hwnd, (LPPOINT)&rectBound.left);
ClientToScreen(hwnd, (LPPOINT)&rectBound.right);

 lptarginfo->rgTarget[i].rectBound.left = rect.left;
 lptarginfo->rgTarget[i].rectBound.top = rect.top;
 lptarginfo->rgTarget[i].rectBound.right = rect.right;
 lptarginfo->rgTarget[i].rectBound.bottom = rect.bottom;
 }
}

// Return our structures:
*(LPTARGINFO FAR *)lParam = lptarginfo;

See Also

PCMINFO, TARGET, TARGINFO, WM_PENEVENT

PE_TERMINATED
Generated by the pen driver component of the system when pen input terminates. Submessage of
WM_PENEVENT.

Parameters
wParam

PE_TERMINATED.
lParam

Extra information encapsulating a reason for termination and the current HPCM. Applications can use
the TerminationFromWpLp and HpcmFromWpLp macros to retrieve these values.

Comments
When an application receives the PE_TERMINATED message, collection has already terminated and the
HPCM handle returned from StartPenInput has become invalid. PE_TERMINATED indicates an
application should perform such tasks as final results processing, repainting, and cleanup.

See Also
WM_PENEVENT

PE_TERMINATING
Generated by the pen driver component of the system when pen input is about to terminate. Submessage
of WM_PENEVENT.

Parameters
wParam

PE_TERMINATING.
lParam

Extra information encapsulating a reason for termination and the current HPCM. Applications can use
the TerminationFromWpLp and HpcmFromWpLp macros to retrieve these values.

Comments
When it receives PE_TERMINATING, the application must immediately retrieve any remaining points.

See Also
WM_PENEVENT

WM_CTLINIT
Sent to the parent of a bedit, hedit, or iedit control while the control is being created in order to get extra
information about the control.

Parameters
wParam

Type of control. This parameter can be CTLINIT_BEDIT, CTLINIT_IEDIT, or CTLINIT_HEDIT.
lParam

Address of a control structure, depending on wParam. For values of CTLINIT_BEDIT,
CTLINIT_HEDIT, or CTLINIT_IEDIT in wParam, lParam points to either a CTLINITBEDIT,
CTLINITHEDIT, or CTLINITIEDIT structure, respectively.

Comments
Each of the CTLINIT structures has its first three members already initialized: cbSize (size of the
structure), hwnd (handle to the control window), and id (child identifier of the control). The parent of the
control can set appropriate values to the rest of the members in the structure and the control will then use
those values when initializing itself.

See Also
CTLINITHEDIT, CTLINITBEDIT, CTLINITIEDIT

WM_GLOBALRCCHANGE
See WM_PENMISCINFO.

WM_HOOKRCRESULT
Sent to a window before WM_RCRESULT is sent to the target window.

The WM_HOOKRCRESULT message is provided only for compatibility with version 1.0 of
the Pen API and will not be supported in future versions.

Parameters
wParam

REC_ code indicating why recognition ended.
lParam

Address of an RCRESULT structure.

Comments
The application may examine the results in the RCRESULT structure. Changing any of the values leads
to unpredictable results. The application should make a copy of any information it needs.

See Also
RCRESULT, SetRecogHook, WM_RCRESULT

WM_PENCTL
Performs several actions, including:

· Converts a logical character position to a byte offset.
· Converts a byte offset to a logical character position.
· Switches the font in a bedit control to the default font.

Parameters
wParam

Submessage identifier as described in the following table. Each submessage is documented
separately.

Constant Description
HE_CANCELCONVERT Cancels Kana-to-Kanji conversion.

(Japanese version only.)
HE_CHAROFFSET Converts logical character position of

a character in the control to byte offset
to the character. For bedit controls
only.

HE_CHARPOSITION Converts byte offset in the text buffer
of the control to the logical character
position, which contains the byte
specified by the byte offset. For bedit
controls only.

HE_DEFAULTFONT Switches the font of the bedit control
to the default font that the bedit
selects at the time of creation. For
bedit controls only.

HE_ENABLEALTLIST Enables or disables the alternate list in
a bedit control.

HE_FIXKKCONVERT Confirm undetermined string and
close Input Method Editor (IME).
(Japanese version only.)

HE_GETBOXLAYOUT Points to the BOXLAYOUT structure,
which is filled with the current box
layout for the control. For bedit
controls only.

HE_GETCONVERTRANG
E

Gets the range of the marked
conversion string. (Japanese version
only.)

HE_GETINFLATE LPRECTOFS filled with current value.
HE_GETINKHANDLE Retrieves a handle to the captured ink.
HE_GETKKCONVERT Determines if the Input Method Editor

(IME) is in pen (or keyboard)
conversion mode. (Japanese version
only.)

HE_GETKKSTATUS Determines the mode of the Kana-to-
Kanji conversion. (Japanese version
only.)

HE_GETRC Fills an RC structure, whose address
is passed in the lParam, with current
values. See the note that follows.

HE_GETUNDERLINE Queries whether underline mode is
set. For hedit controls only.

HE_HIDEALTLIST Hides the alternate list in a bedit
control, assuming it is being displayed.

HE_KKCONVERT Starts Kana-to-Kanji conversion.
(Japanese version only.)

HE_PUTCONVERTCHAR Sends a character, marked for
conversion, to the IME. (Japanese
version only.)

HE_SETBOXLAYOUT Sets a BOXLAYOUT structure. For
bedit controls only.

HE_SETCONVERTRANG
E

Sets the range of the marked
conversion string. (Japanese version
only.)

HE_SETINFLATE Specifies adjustments to the control
window to specify the size of the
writing window.

HE_SETINKMODE Starts the collection of inking.
HE_SETRC Sets the RC structure, whose address

is passed in the lParam. See the note
that follows.

HE_SETUNDERLINE Sets or cancels underline mode. For
hedit controls only.

HE_SHOWALTLIST Displays the alternate list menu in a
bedit control, assuming that alternate
lists are enable.

HE_STOPINKMODE Stops the collection of ink.

The HE_GETRC and HE_SETRC submessages are provided only for compatibility with
version 1.0 of the Pen API and will not be supported in future versions.

lParam

Depends on wParam. See the individual HE_ submessage descriptions for more information.

Comments
Any control message (a message with the EM_ prefix) that can be sent to an edit control can also be sent
to an hedit window. Most of these control messages are also supported by bedit controls.

The HE_ submessages are also common to both hedit and bedit controls except as noted in the
preceding table. In a bedit control, each cell contains one logical character. Carriage return (CR) and line-
feed (LF) bytes together form one logical character.

Before using the HE_SETBOXLAYOUT or HE_SETINFLATE submessages, it is often useful to retrieve
the current structure associated with the control using the HE_GETBOXLAYOUT or HE_GETINFLATE
submessages. You should then change the appropriate members in the retrieved structure. This
procedure reduces the risk of inadvertent changes to the structure.

In older applications compatible with version 1.0 of the Pen API, placing the value RRM_SYMBOL in

wResultMode of the RC structure disables all default diction-ary processing in a bedit control. The 1.0
application can perform dictionary pro-cessing on its own by retrieving the recognition results during the
processing of the HN_RESULT notification and calling the DictionarySearch function.

See Also
HE_CANCELCONVERT, HE_CHAROFFSET, HE_CHARPOSITION, HE_DEFAULTFONT,
HE_ENABLEALTLIST, HE_FIXKKCONVERT, HE_GETBOXLAYOUT, HE_GETIMEDEFAULT,
HE_GETINFLATE, HE_GETINKHANDLE, HE_GETKKCONVERT, HE_GETKKSTATUS,
HE_GETUNDERLINE, HE_SETBOXLAYOUT, HE_SETIMEDEFAULT, HE_SETINFLATE,
HE_SETINKMODE, HE_SETUNDERLINE, HE_SHOWALTLIST, HE_STOPINKMODE

WM_PENEVENT
Sent to an application after StartPenInput has initiated a pen collection.

Parameters
wParam

Submessage identifier as described in the following table. Each submessage is documented
separately.

Constant Description
PE_BEGINDATA Initialization message to all targets.
PE_BEGININPUT Begin default input.
PE_BUFFERWARNING The input queue is getting full. The

application should call GetPenInput.
PE_ENDDATA Termination message to all targets.
PE_RESULT Recognition result message to all

targets.
PE_ENDINPUT Input termination message to window.
PE_GETINKINGINFO Get inking information.
PE_GETPCMINFO Get input collection information.
PE_MOREDATA Target gets more data.
PE_PENMOVE The pen moved, placing more packets

into the input queue without a tip
transition. This mes-sage is coalesced
with other PE_PENMOVE messages,
so the Windows queue has only a
single such message waiting.

PE_PENDOWN The pen tip went down.
PE_PENUP The pen tip went up.
PE_SETTARGETS Set TARGINFO target data structure.
PE_TERMINATED Pen input terminated. The HPCM

handle for the current collection has
become invalid.

PE_TERMINATING Pen input is about to terminate. The
application must retrieve any remaining
points immediately.

lParam

Depends on wParam. In most cases, this is extra information encapsulating a reference to the event
and the HPCM that generated it. These are retrieved using the EventRefFromWpLp and
HpcmFromWpLp macros.

Comments
This message is not sent if polling is used¾that is, if the dwPcm member of the PCMINFO structure
contains the PCM_DOPOLLING flag.

See Also
GetPenInput, StartPenInput, TARGINFO

WM_PENMISC
Sent to notify an application of some pen-related change, such as a change in a bedit control.
WM_PENMISC is also used to get information from a window about pen-related attributes.

Parameters
wParam

One of the following subfunctions:
PMSC_BEDITCHANGE

Indicates that system settings for bedit controls have been changed. When it receives this
message, a bedit control updates its state according to the settings indicated by the
BOXEDITINFO structure that lParam points to.

PMSC_GETHRC

Return a copy of the HRC handle associated with the window. lParam is unused and should be set
to 0. If a window has no associated HRC structure, NULL is returned. It is the caller's responsibility
to destroy any HRC the message returns.

PMSC_GETINKINGINFO

Retrieve the INKINGINFO structure associated with the window and copy it to the structure pointed
to by lParam. The message is ignored if lParam is NULL.

PMSC_GETPCMINFO

Retrieve the PCMINFO structure associated with the window and copy it to the structure pointed to
by lParam. If a window has no associated PCMINFO structure, NULL is returned. The message is
ignored if lParam is NULL. The system initializes PCMINFO as follows:
· dwPcm is a combination of the PCM_RECTBOUND, PCM_TIMEOUT, and PCM_TAPNHOLD

flags.
· rectBound is the client area of hwnd, in screen coordinates.
· dwTimeout is the current writing time-out in milliseconds, as reported by GetPenMiscInfo

using PMI_TIMEOUT.
· All other members are 0.

PMSC_INKSTOP

Inking has stopped because of a pen-down event. lParam contains the HPCM handle
corresponding to the collection and the event reference at which the inking stopped. An application
can retrieve these values with the HpcmFromWpLp and EventRefFromWpLp macros,
respectively.

PMSC_KKCTLENABLE

WM_PENMISC is broadcast when kana-kanji controls are enabled. (Japanese version only.)
PMSC_LOADPW

WM_PENMISC is broadcast when PENWIN.DLL loads or unloads. lParam is one of the following:
· PMSCL_LOADED (PENWIN.DLL just loaded).
· PMSCL_UNLOADED (PENWIN.DLL just unloaded).
· PMSCL_UNLOADING (PENWIN.DLL is about to unload).

PMSC_PENUICHANGE

Broadcast to indicate that the pen user interface DLL (PENUI) has been changed. (Japanese
version only.)

PMSC_SETHRC

Associate the HRC handle in lParam with the window. The window makes a copy of the HRC for
itself so that the sender of the message can destroy its copy. Returns nonzero if successful;
otherwise, returns 0.

PMSC_SETINKINGINFO

Associate the INKINGINFO structure pointed to by lParam with the window. Returns nonzero if
successful; otherwise, returns 0.

PMSC_SETPCMINFO

Associate the PCMINFO structure pointed to by lParam with the window. The cbSize member of
the structure must be initialized with sizeof(PCMINFO). Returns nonzero if successful; otherwise,
returns 0.

PMSC_SUBINPCHANGE

Indicates the character finder DLL (SUBINPUT) has been changed. (Japanese version only.)
PMSC_GETSYMBOLCOUNT

Retrieve the number of symbols contained in the last recognition result. lParam should be 0. This
message should be sent by the window that received the HN_RESULT notification before returning
from the notification message.

PMSC_GETSYMBOLS

Retrieve the symbols contained in the last recognition result. lParam should be a pointer to a buffer
large enough to accommodate the number of symbols contained in the result followed by
SYV_NULL. The number of symbols in the result can be obtained by sending the WM_PENMISC
message to the window with the PMSC_GETSYMBOLCOUNT submessage. This message should
be sent by the window that received the HN_RESULT notification before returning from the
notification message. A nonzero value is returned to indicate success.

PMSC_SETSYMBOLS

Change the symbols for the last recognition result. lParam should be a pointer to a buffer
containing the array of symbols to be set terminated by SYV_NULL. lParam may be NULL to
indicate an empty result. The control receiving this message should not perform any garbage
detection on results set in this manner. This allows the application to perform its own garbage
detection. In the case of the bedits controls, the number of symbols set must be the same as the
number of symbols obtained using the WM_PENMISC message with the
PMSC_GETSYMBOLCOUNT submessage. If not, the symbols are not set. This message should
be sent by the window that received the HN_RESULT notification before returning from the notifi-
cation message. A nonzero value is returned to indicate success.

lParam

Depends on wParam.

See Also
BOXEDITINFO, INKINGINFO, PCMINFO

WM_PENMISCINFO
Posted to all top-level windows whenever a pen system change is made.

Parameters
wParam

PMI_ value that identifies the system change.
lParam

New value, depending on wParam.

Comments
This message is broadcast to all top-level windows whenever a new global pen default is set by a call to
the SetPenMiscInfo function. (Control Panel is the principal source of these changes.) A series of
WM_PENMISCINFO broadcasts is typically made after a Control Panel application is closed.

In version 2.0 of the Pen API, the message parameters have been defined and the name of this message
has been changed from WM_GLOBALRCCHANGE to WM_PENMISCINFO, although the value is the
same for compatibility with version 1.0. The wParam and lParam parameters are the same as the
parameter values provided to the SetPenMiscInfo function.

For version 1.0 compatibility, a call to the SetGlobalRC function also causes a posted broadcast of this
message to all top-level windows, but the parameters are both 0. PMI_RCCHANGE may be used as an
alias for 0 for wParam; however, PMI_RCCHANGE is not a valid parameter to GetPenMiscInfo or
SetPenMiscInfo.

See Also
SetPenMiscInfo, GetPenMiscInfo, SetGlobalRC, PMI_

WM_RCRESULT
Sent to an application by a recognizer with the results of a recognition.

The WM_RCRESULT message is provided only for compatibility with version 1.0 of the Pen
API and will not be supported in future versions.

Parameters
wParam

REC_ code indicating why recognition ended.
lParam

Address of an RCRESULT structure.

See Also
ProcessWriting, RCRESULT, Recognize, RecognizeData

Pen Application Programming
Interface Constants

This chapter describes some of the many manifest constants defined by the Pen Application
Programming Interface, listed alphabetically. Constants listed in this chapter are primarily those that do
not contain a complete listing in any individual function or message description elsewhere in this
documentation. Constants that pertain to individual functions or messages can be found with the
descriptions of those functions or messages.

Each entry includes a complete description of the constant. For a comprehensive list of the Pen API
constants, see Chapter 9, "Summary of the Pen Application Programming Interface," or refer to the
PENWIN.H header file. Refer to the index to locate the descriptions of any of the Pen API constants.

ALC_ Alphabet Codes
The ALC_ constants enable a subset of the active character set, depending on the current language.

For example, the French language includes "h" in the lowercase alphabet. In the same way, "£" replaces
"$" if ALC_MONETARY is set in British systems. For more information about alphabets, see "Specifying
an Alphabet Set" in Chapter 8 and "Alphabet" in Chapter 5.

Comments
The following ALC_ constants are are supported:

Constant Description
ALC_ALL All characters except Japanese characters.
ALC_ALPHA ALC_LCALPHA | ALC_UCALPHA.
ALC_ALPHANUMERIC ALC_LCALPHA | ALC_UCALPHA |

ALC_NUMERIC.
ALC_ASCII Seven-bit characters ASCII #20-ASCII

#0x7F
ALC_DBCS Allow double-byte character set (DBCS)

variety of single-byte character set (SBCS).
ALC_DEFAULT Default value; uses complete set of

recognizable char-acters and gestures. The
set of these is defined by the recognizer. It is
the set of characters at or above
ALC_SYSMINIMUM that the recognizer can
accurately distinguish.
If an application sets ALC_DEFAULT in the
HRC object, and the recognizer is an
alphanumeric system recognizer, the
recognizer must at least support
ALC_SYSMINIMUM as a default.
ALC_DEFAULT should be the same
character set as the complete character set
for the given language minus the
ALC_OTHER characters.
If an application combines ALC_DEFAULT
with other ALC_ values, ALC_DEFAULT is
ignored.

ALC_GESTURE Gestures.
ALC_GLOBALPRIORITY Specifies that the global recognition priorities

(from Tool Palette) are to be used during
recognition. An application can control its
own recognition priority in a control by
clearing this flag and then setting its own
priorities in the HRC.

ALC_HIRAGANA Hiragana characters. (Japanese version
only.)

ALC_JIS1 All Kanji Shift JIS level 1 characters.
(Japanese version only.)

ALC_KANJI Kanji characters, Shift JIS levels 1, 2, and 3.
(Japanese version only.)

ALC_KANJIALL ALC_ALL | ALC_HIRAGANA |

ALC_KATAKANA | ALC_KANJI. (Japanese
version only.)

ALC_KANJISYSMINIMUM Minimum set of characters needed for
Japanese system recognizer. Same as
ALC_SYSMINIMUM | ALC_HIRAGANA |
ALC_KATAKANA | ALC_JIS1. (Japanese
version only.)

ALC_KATAKANA Katakana characters. (Japanese version
only.)

ALC_LCALPHA Lowercase letters a-z.
ALC_MATH Math symbols: %^*()-+={}<>,/.
ALC_MONETARY Monetary symbols: ,.$ or appropriate

currency desig-nation such as the yen or
pound sterling symbol, accord-ing to the
current language setting.

ALC_NONPRINT Space, tab, carriage-return, and control
glyphs.

ALC_NOPRIORITY No priority. This value means the application
has no preference for one type of symbol
over another.

ALC_NUMERIC Numerals 0-9.
ALC_OEM Bits reserved for recognizer capabilities

specific to the original equipment
manufacturer (OEM).

ALC_OTHER Other symbols: @ # | _ ~ []. That is, all
other symbols not included in
ALC_ALPHANUMERIC, ALC_MONETARY,
ALC_MATH, and ALC_PUNC.

ALC_PUNC Punctuation: !-;`"?()&.,\.
ALC_RESERVED Reserved.
ALC_SYSMINIMUM Minimum set of characters needed for

Roman alphabet system recognizers:
ALPHANUMERIC | ALC_PUNC |
ALC_WHITE | ALC_GEST.

ALC_UCALPHA Uppercase letters A-Z.
ALC_USEBITMAP (Description follows table.)
ALC_WHITE White space. If this value is not set in the

HRC object, the recognizer should ignore
any white space left between characters.
Thus, ALC_WHITE is included in the
ALC_DEFAULT. For example, in the zip
code field of the Hform sample application,
where ALC_NUMERIC | ALC_GESTURE is
set, the user does not have to worry about
getting any extraneous spaces.

If ALC_USEBITMAP is set, it indicates the recognizer should adopt an alphabet set defined by the
application. The defined set specifies individual characters of an alphabet by setting bits in a 256-bit
bitfield. The lowest bit corresponds to the first character of the alphabet, the second bit to the second
character, and so forth.

An application passes the bitfield to a recognizer through the SetAlphabetHRC or SetBoxAlphabetHRC

functions. The following code shows how. Assume the array rgbfSet holds the desired bit values.

HRC hrc; // HRC handle
BYTE rgbfSet[cbRcrgbfAlcMax] // 256-bit bitfield

SetAlphabetHRC(hrc, ALC_USEBITMAP, (LPBYTE) rgbSet);

ALC_USEBITMAP can be combined with other ALC_ values using the bitwise-OR operator. An
application can thus, for example, select certain letters with a defined bitmap and combine them with all
numerals and punctuation.

For Asian languages other than Japanese, refer to the appropriate subsets within the language: phonetic
symbols for words within the language, phonetic symbols for words outside the language, and native
pictographs. For example, in Korean, ALC_HANGUEL equals ALC_KATAKANA, and ALC_HANJA equals
ALC_KANJI.

For kanji and other Asian encodings, different effects are possible depending on the state of ALC_DBCS.
These effects are described in the following table.

Character in ALC_DBCS = 0 ALC_DBCS = 1
ALC_HIRAGANA N/A Shift JIS characters

0x8154, 0x8155, and
0x829F - 0x82F1.

ALC_JIS1 N/A All Kanji Shift JIS level
1 characters.

ALC_KATAKANA 0xA1 - 0xDF Shift JIS characters
0x814A, 0x814B,
0x8152, 0x8153,
0x815B, and 0x8340 -
0x8396.

ALC_KANJI N/A All Kanji characters,
Shift JIS levels 1, 2,
and 3.

The following table shows the characters in Shift-JIS in each ALC_ set supported in the Japanese
version:

ALC_ value Shift JIS Code
ALC_HIRAGANA 0x8154, 0x8155, and 0x829F - 0x82F1
ALC_JIS1 0x8156 - 0x815A, 0x889F - 0x9872
ALC_KANJI 0x8156 - 0x815A, 0x889F - 0xEAA4,

0xED40 - 0xEDFC, 0xEE40 - 0xEEFC,
0xF040 - 0xF9FC, 0xFAF0 - 0xFAFC,
0xFB40 - 0xFBFC, 0xFC40 - 0xFC4B

ALC_KATAKANA 0x814A, 0x814B, 0x8152, 0x8153, 0x815B,
0x8340 - 0x8396

ALC_LCALPHA 0x8281 - 0x829A
ALC_MATH 0x8143, 0x8144, 0x814F, 0x815E, 0x8169,

0x816A, 0x816F, 0x8170, 0x817B - 0x817E,
0x8180 - 0x8188, 0x8193, 0x8196

ALC_MONETARY 0x8143, 0x8144, 0x818F - 0x8192
ALC_NONPRINT 0x8140
ALC_NUMERIC 0x824F - 0x8258

ALC_OTHER 0x814C - 0x814E, 0x8150, 0x8151, 0x8160 -
0x8164, 0x816B, 0x816C, 0x8171 - 0x8174,
0x8179, 0x817A, 0x817F, 0x8189 -
0x818E, 0x8194, 0x8197 - 0x81FC, 0x8240 -
0x824E, 0x8259 - 0x825F, 0x827A - 0x8280,
0x829B - 0x829E, 0x82F2 - 0x82FC,
0x837F, 0x897 - 0x83FC, 0x8840 - 0x84FC,
0x8740 - 0x879D

ALC_PUNC 0x8141 - 0x8149, 0x815B - 0x815F, 0x8165 -
0x816A, 0x816D - 0x8170, 0x8175 - 0x8178,
0x817C, 0x8195

ALC_UCALPHA 0x8260 - 0x8279
ALC_WHITE 0x8140

A recognizer must not return a symbol value outside the specified subset. However, a recognizer does not
have to force a match to the subset; it can instead return "unknown" if a suitable match is not found.

You can set the ALC_ value for an hedit or bedit control in a dialog box by insert-ing a special string in the
.RC file's CONTROL statement. This string is in the form ALC<xxxx> where xxxx represents a case-
independent hexadecimal ALC_ code, without a preceding 0x qualifier. You can append normal window
text after the ALC_ entry.

The following line demonstrates setting the ALC_ value for an hedit control using a CONTROL statement:

CONTROL "ALC<402C>Dollars", IDD_PAID, "hedit", ES_LEFT | ... etc.

In the above example, the ALC<402C> value is stripped out with "Dollars" left as window text. The
number 402C is the hexadecimal equivalent of:

ALC_NUMERIC | ALC_PUNC | ALC_MONETARY | ALC_GESTURE

The following example allows only kanji characters, katakana characters, and gestures; it does not
specify initial window text:

CONTROL "ALC<74000>", IDD_J, "hedit", ES_LEFT | ... etc.

BXD_ Boxed Edit Control
The BXD_ values define the initial dimensions of the various components of a boxed edit (bedit) control.
These are constants defined in terms of dialog units. They are converted to pixel dimensions by the bedit
control before use.

For more information, see the entries for the BOXLAYOUT and GUIDE structures in Chapter 11, "Pen
Application Programming Interface Structures."

The following table lists the BXD_ values.

Constant Value Description
BXD_BASEHEIGHT 13 Initial value for cyBase in GUIDE

structure after conversion from
dialog units to pixels.

BXD_BASEHORZ 0 Initial value for cxBase in GUIDE
structure after conversion from
dialog units to pixels.

BXD_CELLHEIGHT 16 Initial value for cyBox in GUIDE
structure after conversion from
dialog units to pixels.

BXD_CELLWIDTH 12 Initial value for cxBox in GUIDE
structure after conversion from
dialog units to pixels.

BXD_CUSPHEIGHT 2 Initial value for cyCusp in
BOXLAYOUT structure after
conversion from dialog units to
pixels.

BXD_ENDCUSPHEIGHT 4 Initial value for cyEndCusp in
BOXLAYOUT structure after
conversion from dialog units to
pixels.

BXD_MIDFROMBASE 0 Same as BXD_BASEHORZ.

BXDK_ Japanese Boxed Edit Control
The BXDK_ values define the initial dimensions of the various components of a Japanese boxed edit
(bedit) control. These are constants defined in terms of dialog units. They are converted to pixel
dimensions by the bedit control before use.

For more information, see the entries for the BOXLAYOUT and GUIDE structures in Chapter 11, "Pen
Application Programming Interface Structures."

The following table lists the BXDK_ values.

Constant Value Description
BXDK_BASEHEIGHT 28 Initial value for cyBase in GUIDE

structure after conversion from
dialog units to pixels.

BXDK_BASEHORZ 0 Initial value for cxBase in GUIDE
structure after conversion from
dialog units to pixels.

BXDK_CELLHEIGHT 32 Initial value for cyBox in GUIDE
structure after conversion from
dialog units to pixels.

BXDK_CELLWIDTH 32 Initial value for cxBox in GUIDE
structure after conversion from
dialog units to pixels.

BXDK_CUSPHEIGHT 28 Initial value for cyCusp in
BOXLAYOUT structure after
conversion from dialog units to
pixels.

BXDK_ENDCUSPHEIGHT 10 Initial value for cyEndCusp in
BOXLAYOUT structure after
conversion from dialog units to
pixels.

IDC_ Display Cursor
A pen-aware display driver must define the following new cursor types.

Constant Value Description
IDC_ALTSELECT 32501 Upside-down standard arrow used

for tap-and-hold selection.
IDC_PEN 32631 Default pen. Pen points up and to

the left.

Example
You can access the tap-and-hold cursor with the following code:

HANDLE hPenDLL = GetSystemMetrics(SM_PENWINDOW);
if (hPenDLL)

SetCursor(LoadCursor(hPenDLL, IDC_ALTSELECT));

PCM_ Pen Collection Mode
Pen collection mode values define the condition that terminates an input session. (The system is said to
be in "pen collection mode" during an input session when pen movement generates input data instead of
being interpreted as mouse movement.) Pen collection can be stopped on any of the following conditions
set by the PCM_ values in the dwPcm member of the PCMINFO structure:

Constant Description
PCM_ADDDEFAULTS Combine the default termination conditions

with those specified by the application.
PCM_DOPOLLING Request polling mode, rather than the

default WM_PENEVENT messages.
PCM_INVERT Stop pen collection if the user touches the

"eraser" end of the pen to the tablet. Not all
tablets can detect this event.

PCM_PENUP Stop pen collection when the pen is lifted
from the tablet.

PCM_RANGE Stop pen collection when the pen leaves
tablet's range of sensitivity. Not all tablets
can detect this event.

PCM_RECTBOUND Stop when the pen is placed down outside
the inclusion rectangle. The inclusion
rectangle is specified in the rectBound
member of the PCMINFO structure.

PCM_RECTEXCLUDE Stop when the pen touches inside the
exclusion rectangle. The exclusion rectangle
is specified in the rectExclude member of
the PCMINFO structure.

PCM_RGNBOUND Stop when the pen touches outside the
bounding region specified in the hrgnBound
member of the PCMINFO structure.

PCM_RGNEXCLUDE Stop when the pen touches inside the
exclusion region specified in the
hrgnExclude member of the PCMINFO
structure.

PCM_TAPNHOLD Enable detection of the tap-and-hold
gesture.

PCM_TIMEOUT Stop pen collection if there is no pen activity
for a specified time-out. The time-out value is
specified in the dwTimeout member of the
PCMINFO structure.

PDC_ Pen Device Capabilities
The following table lists the values for the lPdc member of the PENINFO structure:

Constant Description
PDC_BARREL1 Barrel button 1 is present.
PDC_BARREL2 Barrel button 2 is present.
PDC_BARREL3 Barrel button 3 is present.
PDC_INTEGRATED Tablet surface is also a display monitor.
PDC_INVERT The tablet can detect when the "eraser" end

of the pen is in contact with the tablet.
PDC_PROXIMITY The tablet can detect when the pen is near

but not in contact with the tablet surface.
PDC_RANGE The tablet can detect when the pen leaves or

enters the tablet's range of sensitivity.
PDC_RELATIVE The pen driver can generate only relative

coordinates.

For additional details, see the entry for the PENINFO structure in Chapter 11, "Pen Application
Programming Interface Structures."

PDK_ State Bits for Pen Driver Kit
The PDK_ values inform the system when a mouse event is being generated by pen movement, as well
as the current state of any barrel buttons. This information is contained in the wPDK and wPdk members
of the STROKEINFO and PENPACKET structures, respectively. The GetPenAsyncState function also
accepts a PDK_ value as its only argument. The following table lists the PDK_ values:

Constant Value Description
PDK_NULL 0x0000 No flags set (default).
PDK_UP 0x0000 Same as PDK_NULL.
PDK_BARREL1 0x0002 Barrel button 1 is depressed.
PDK_BARREL2 0x0004 Barrel button 2 is depressed.
PDK_BARREL3 0x0008 Barrel button 3 is depressed.
PDK_DOWN 0x0001 Pen is in contact with the tablet.
PDK_SWITCHES 0x000F All of the above.
PDK_TIPMASK 0x0001 Mask for testing PDK_DOWN.
PDK_TRANSITION 0x0010 Only has meaning if set by pen

services. This bit is set if the first
point in the sequence being
returned is in a different pen-tip
state (up or down) from the
previous points returned.
If set on a call to
AddPointsPenData, a new stroke
is created even if the previous call
to AddPointsPenData appended
points of the same pen state. By
default, a sub-sequent call to
AddPointsPenData adding points
of the same state as the previous
call appends the points to the last
stroke instead of creating a new
stroke.

PDK_EVENT 0x0010 Alias for PDK_TRANSITION.
PDK_PENIDMASK 0x0F00 Mask for bits 8-11 (see paragraph

following table).
PDK_INVERTED 0x0080 Pen is upside down ("eraser" end is

in contact with tablet).
PDK_INKSTOPPED 0x2000 Inking has stopped.
PDK_OUTOFRANGE 0x4000 Set if the tablet detects the pen

leaving the range of detection. If
set, other information in the packet
is invalid.

PDK_DRIVER 0x8000 Set if event is generated by the pen
driver (as opposed to the mouse
driver).

For PDK_ values other than PDK_PENIDMASK, bits 8 through 11 contain the identification number of the
physical pen that generated the event. Pen numbering begins at 0.

See Also

PENPACKET, STROKEINFO

PDT_ OEM-Specific Data
PDT_ values provide information specific to the tablet hardware. These values are used in the wPdt
member of the OEMPENINFO structure.

Constant Value Description
PDT_NULL 0 Null value.
PDT_PRESSURE 1 Tablet can detect change in pen

pressure.
PDT_HEIGHT 2 Tablet can detect height of pen

above surface.
PDT_ANGLEXY 3 Tablet can detect change in pen

horizontal angle.
PDT_ANGLEZ 4 Tablet can detect change in pen

vertical angle.
PDT_BARRELROTATION 5 Tablet can detect rotation of pen

barrel.
PDT_OEMSPECIFIC 16 Maximum number of values

allowed.

For additional information, see the PENINFO and OEMPENINFO structures in Chapter 11, "Pen
Application Programming Interface Structures."

PDTS_ Pen Data Scaling
The PDTS_ data scaling units are used in the uScale and wPndtNew arguments of the CreatePenData
and MetricScalePenData functions, respectively. These units are used for the wPndts member of the
PENDATAHEADER structure. Positive x-coordinate is to the right; positive y-coordinate is down.

The following table lists the PDTS_ values. These values cannot be combined with the bitwise-OR
operator.

Constant Description
PDTS_ARBITRARY The application has done its own

scaling of the data point.
PDTS_COMPRESS2NDDERIV The second derivative between

points is stored.
PDTS_DISPLAY Each logical unit is equivalent to a

display pixel. Positive x is to the
right; positive y is down.

PDTS_HIENGLISH Each logical unit is mapped to
0.001 inch. Positive x is to the
right; positive y is down.

PDTS_HIMETRIC Each logical unit is mapped to
0.001 millimeter. Positive x is to the
right; positive y is down.

PDTS_LOMETRIC Each logical unit is mapped to 0.01
millimeter. Positive x is to the right;
positive y is down.

PDTS_STANDARDSCALE The standard scaling metric,
equivalent to PDTS_HIENGLISH.
Standard recognizers scale to this
value.

The following table lists the PDTS_ bit settings. These bit settings can be combined using the bitwise-OR
operator.

Constant Description
PDTS_COMPRESSED The data is compressed.
PDTS_NOCOLLINEAR All redundant points removed.
PDTS_NOEMPTYSTROKES All empty strokes removed.
PDTS_NOOEMDATA OEM data removed.
PDTS_NOPENINFO The PENINFO structure has been

trimmed from the header.
PDTS_NOTICK Timing information removed.
PDTS_NOUPPOINTS All pen-up strokes removed.
PDTS_NOUSER User information removed.

The following table lists the PDTS_ mask values:

Constant Description
PDTS_COMPRESSMETHOD Bits encode the compression

scheme that is used.
PDTS_SCALEMASK Mask scaling bits for hardware

information.

For additional information, see the entries for the CompactPenData and MetricScalePenData functions
in Chapter 10, "Pen Application Programming Interface Functions."

PDTT_ Pen Data Trimming
PDTT_ values are used as arguments for the CompactPenData function. The following table describes
the PDTT_ values:

Constant Description
PDTT_DEFAULT Reallocates memory block to fit

data; does not trim the data.
PDTT_ALL Removes PENINFO structure from

header, all pen-up points, OEM
data, and collinear points.

PDTT_COLLINEAR Removes coincident and collinear
points from the pen data.

PDTT_COMPRESS Compresses the data without
losing any information.

PDTT_DECOMPRESS Decompresses the data.
PDTT_OEMDATA Removes all OEM data.
PDTT_PENINFO Removes PENINFO structure from

header.
PDTT_UPPOINTS Removes all data from pen-up

points (points collected when the
pen is not in contact with the
tablet).

For additional information, see the CompactPenData function in Chapter 10, "Pen Application
Programming Interface Functions."

PMI_ Pen Miscellaneous Information
The PMI_ values are used as arguments for the GetPenMiscInfo and SetPenMiscInfo functions. The
WM_PENMISCINFO message also uses PMI_ values in its wParam parameter.

The following table describes the PMI_ values:

Constant Description
PMI_BEDIT Boxed edit information.
PMI_CXTABLET Width of tablet (in units of 0.001 inch) if

present, else the width of the screen.
PMI_CYTABLET Height of tablet (in units of 0.001 inch) if

present, else the height of the screen.
PMI_ENABLEFLAGS Flags describing whether certain Pen API

features are enabled. The flags can be a
combination of the following values:
PWE_AUTOWRITE Enable pen
functionality where the I-Beam cursor is
present.
PWE_ACTIONHANDLES Enable action
handles in controls.
PWE_INPUTCURSOR Show cursor while
writing.
PWE_LENS Enable pop-up letter guides
(that is, the lens).

PMI_INDEXFROMRGB A standard RGB pen-tip color value from 0 to
0xFFFFFF.

PMI_PENTIP Address of current pen-tip structure.
PMI_RGBFROMINDEX An integer index from 0 to 15 for the

standard pen-tip color table.
PMI_SAVE Save settings to file.
PMI_SYSFLAGS Flags describing which pen system

components are loaded. The flags can be a
combination of the following values:
PWF_RC1 Support available for Pen API
version 1.0 Recognition Context (RC) and
associated functions.
 PWF_PEN Pen/tablet hardware is
present.
 PWF_INKDISPLAY Ink-compatible
display driver is present.
 PWF_RECOGNIZER System recognizer
is present.
 PWF_BEDIT Boxed edit (bedit) control is
available.
 PWF_HEDIT Handwriting edit (hedit)
control is available.
 PWF_IEDIT Ink edit (iedit) control is
available.
 PWF_ENHANCED Enhanced features,
including gesture support and 1 millisecond
timing, are available.
 PWF_FULL All components listed above

are present.
PMI_SYSREC Handle to system recognizer, if present.
PMI_TICKREF Absolute reference time that the system

uses to calculate time-stamps for strokes in
pen data objects and inksets.

PMI_TIMEOUT Time-out value to end handwriting input, in
milliseconds.

PMI_TIMEOUTGEST Time-out value to end a gesture, in
milliseconds.

PMI_TIMEOUTSEL Time-out value in milliseconds for press-and-
hold gesture. The range of permissible
values is 0 to 5000. If press-and-hold has
been disabled, this value is 65,535.

For additional information, see the entries for the GetPenMiscInfo and SetPenMiscInfo functions in
Chapter 10, "Pen Application Programming Interface Functions."

RCD_ Writing Direction
RCD_ values are used in the wRcDirect member of the global RC structure. The RC structure is passed
to a version 1.0 recognizer in the lpRC argument of InitRC and informs the recognizer of the writing
direction. To set the writing direction differently than the default direction, call SetGlobalRC with the
desired RCD_ value in wRcDirect.

RCD_ constants are provided only for compatibility with version 1.0 of the Pen API and will not be
supported in future versions.

The writing direction consists of both primary and secondary directions. For example, English is written
from left to right (primary) and then down the page (secondary). Chinese is often written from the top
down (primary) and then right to left across the page (secondary).

The high byte of the direction indicates primary direction; the low byte indicates secondary direction. A
recognizer can choose to ignore this word and support only the natural direction of the given language.
The default value is determined by the recognizer.

The following table lists the RCD_ values:

Constant Description
RCD_DEFAULT Default value.
RCD_BT Bottom to top.
RCD_LR Left to right.
RCD_RL Right to left.
RCD_TB Top to bottom.

Example
For example, the value for standard English writing direction is defined as follows:

#define wRcDirectRoman ((RCD_LR<<8) | RCD_TB)

See Also

RC

RCO_ Recognition Options
RCO_ values apply only to recognizers compatible with version 1.0 of the Pen API. They are used in the
lRcOptions member of the RC structure, which specifies various options for recognition. RCO_ values
can be combined with a logical-OR operator.

Constant Description
RCO_BOXCROSS Display a plus sign (+) at center of each

box in a bedit control.
RCO_BOXED Set if the writer is expected to write in

boxes and the GUIDE structure contains
valid data.

RCO_COLDRECOG Set in results messages if the result is
coming from cold recognition.

RCO_DISABLEGESMAP Disables gesture mapping during the
Recognize function call.

RCO_NOFLASHCURSO
R

No flash cursor feedback.

RCO_NOFLASHUNKNO
WN

If set in the RC structure and nothing was
recognized, the cursor will not momentarily
change to a question-mark cursor shape.

RCO_NOHIDECURSOR If set, doesn't remove cursor while inking.
RCO_NOHOOK Prevents application-wide and system-

wide hooks from being called.
RCO_NOPOINTEREVEN
T

If set, the RC Manager will not try to
recognize a pointer event but will pass on
all data to the recog-nizer. This is useful,
for example, if the application has installed
a shape recognizer so the user can enter
dots of ink.
If the null recognizer is selected into the
RC, RCO_NOPOINTEREVENT is
assumed to be set.

RCO_NOSPACEBREAK If set, indicates that the results passed
back from the recognizer should be
passed on to the dictionaries without
breaking at space boundaries.

RCO_SAVEALLDATA Saves all the pen data in the RCRESULT
structure that is generated by the tablet,
including any data for pen-up strokes and
optional data such as pressure. By default,
only data used by the recognizer is saved.
The Microsoft recognizer collects all data
from first to last pen-down stroke,
including pen-up strokes in between, and
any available OEM data for each stroke.

RCO_SAVEHPENDATA Saves the pen data. If this is set, the
recognizer does not delete the data when
the application returns from
WM_RCRESULT. It is the application's
responsibility to free the pen data.

RCO_SUGGEST If set, the following actions take place:

After all dictionaries have been
unsuccessfully searched with strings from
the symbol graph, each dictionary is called
with DIRQ_SUGGEST to allow the diction-
aries to make suggestions. If a string is not
yet identified by a dictionary, the null
dictionary is used to create a symbol string
from the symbol graph.

RCO_TABLETCOORD If set, indicates that the members
representing coordi-nate values in the RC
structure are in tablet coordi-nates instead
of screen coordinates. This can be used to
collect recognition data on the portion of
the tablet not mapped to the screen.

RCOR_ Tablet Orientation
RCOR_ values are used in the wRcOrient member of the global RC structure. The RC structure is
passed to a version 1.0 recognizer in the lpRC argument of InitRC and informs the recognizer of the
tablet orientation. The recognizer can optionally use the orientation to direct the transformation of tablet
coordinates to ideal coordi-nates used for recognition.

RCOR_ constants are provided only for compatibility with version 1.0 of the Pen API and will not be
supported in future versions.

The following table lists the RCOR_ values:

Constant X-coordinate Y-coordinate
RCOR_NORMAL X = X' Y = Y'
RCOR_LEFT X = yMax - Y' Y = X'
RCOR_RIGHT X = Y' Y = xMax - X'
RCOR_UPSIDEDOWNX = xMax - X' Y = yMax - Y'

As with the preceding values, direction is provided as a clue to the recognizer. A recognizer may attempt
to identify the direction of writing by itself.

See Also
RC

RCP_ User Preferences
RCP_ values are used in the wRcPreferences member of the global RC structure. The RC structure is
passed to a version 1.0 recognizer in the lpRC argument of InitRC and informs the recognizer of the user
preferences.

RCP_ constants are provided only for compatibility with version 1.0 of the Pen API and will not be
supported in future versions.

The following table lists the RCP_ values:

Constant Description
RCP_LEFTHAND User writes with left hand.
RCP_MAPCHAR Tells a version 1.0 recognizer to fill in

segmentation information in the lpsyc
member of the SYG structure. This value
cannot be set by the user because there is
no Control Panel access to it.
RCP_MAPCHAR is used by the Trainer.

See Also
RC

RCRT_ Results Type
RCRT_ values apply only to recognizers compatible with version 1.0 of the Pen API. They are used in the
wResultsType member of the RCRESULT structure, which specifies the type of results as described in
the following table:

Constant Description
RCRT_ALREADYPROCESSED Set by a hook if the result has

already been acted upon. If an
application receives a result with
this bit already set, it should erase
the ink and perform no other pro-
cessing. An application-wide hook
can set this flag. The Hform
sample application demonstrates
its use.

RCRT_DEFAULT Normal return type.
RCRT_GESTURE Result is a gesture symbol.
RCRT_NORECOG Nothing recognized; only the data

is returned. No recognition was
attempted.

RCRT_NOSYMBOLMATCH Nothing recognized. The ink drawn
did not match any enabled
symbols.

RCRT_PRIVATE Recognizer-specific symbol
recognized.

RCRT_UNIDENTIFIED Result contained unidentified
results.

Example
The code below shows an example of how to use RCRT_ values:

if ((lpr->wResultsType & (RCRT_NOSYMBOLMATCH | RCRT_ALREADYPROCESSED |
 RCRT_NORECOG | RCRT_PRIVATE)) == 0)

{
// A gesture or character
if (lpr->wResultsType & RCRT_GESTURE)
{

.

. // Handle Gesture

.
}
else
{

.

. // Character results

.
}

}
else
{

. // Handle special cases as necessary. In general,

. // should just ignore. This is what hedits do.

.
}

REC_ Recognition Functions
The REC_ constants specify return values from the GetPenHwEventData and GetPenHwData functions.
They are also returned from the obsolete functions Recognize, RecognizeData, and ProcessWriting,
and as the wParam value of the WM_RCRESULT message. Return values less than REC_DEBUG are
provided for debugging purposes only and represent abnormal termination.

Constant Description
REC_OK This result message to be followed by other

results before Recognize terminates. This is
a valid wParam value for WM_RCRESULT,
but it can never be the return value for
Recognize.

REC_ABORT Recognition stopped by a call to
EndPenCollection with this value. The lpPnt
data is not valid.

REC_BADHPENDATA Returned if HPENDATA cannot be locked or
has an invalid header. This value is also
returned if HPENDATA has no data in it or if
the data is in an incorrect scale or
compressed.

REC_BUFFERTOOSM
ALL

Returned by GetPenHwEventData.

REC_BUSY Returned if another task is currently
performing recognition.

REC_DONE Returned by RecognizeData upon normal
completion.

REC_NA Function not available.
REC_NOINPUT Returned by RecognizeData if the buffer

contains no data, or returned by Recognize
if recognition ended before any data was
collected. For example, a pen-down stroke
may have occurred outside the bounding
rectangle before any data was collected.

REC_NOTABLET Tablet not physically present.
REC_OOM Out-of-memory error.
REC_OVERFLOW Data overflow during execution of the call.
REC_POINTEREVENT Returned if the user makes contact with the

tablet surface and lifts the pen before the
pen tip travels a short distance. This value is
also returned if the user does a press-and-
hold action; that is, the pen makes contact
with the tablet and remains in that position
for a short period of time.
REC_POINTEREVENT informs the
application it should begin selection actions
rather than inking or recognition. If
REC_POINTEREVENT is returned, no
WM_RCRESULT message is generated and
no ink is displayed.

REC_TERMBOUND Recognition ended because of a hit test
outside the bounding rectangle. The pntEnd

member of RCRESULT is filled with the point
causing the stop.

REC_TERMEX Recognition ended because of a hit test
inside the exclusion rectangle. The pntEnd
member of RCRESULT is filled with the point
causing the stop.

REC_TERMOEM Values greater than or equal to 512 reserved
for recognizer-specific termination reasons.

REC_TERMPENUP Recognition ended on pen up. ThepntEnd
member of RCRESULT is filled with the pen-
up point that terminated recognition.

REC_TERMRANGE Recognition ended because the pen left the
proximity range.

REC_TERMTIMEOUT Recognition ended on time-out. (The pen
was up con-tinuously for a given amount of
time.)

Debugging Values
All of the values listed in the following table are in the debug version of PENWIN.DLL only. No
WM_RCRESULT message is generated if these values are returned by Recognize.

Constant Description
REC_DEBUG All debugging return values are less than or

equal to this.
REC_ALC Invalid enabled alphabet.
REC_BADEVENTREF Returned when the wEventRef member in

the RC structure is invalid.
REC_CLVERIFY Invalid verification level.
REC_DICT Invalid dictionary parameters.
REC_ERRORLEVEL Invalid error level.
REC_GUIDE Invalid GUIDE structure.
REC_HREC Invalid recognition handle.
REC_HWND Invalid handle to window to send results to.
REC_INVALIDREF Invalid data reference parameter.
REC_LANGUAGE Returned by the recognizer when the

lpLanguage member of RC contains a
language that is not supported by the
recognizer. Call ConfigRecognizer with the
WCR_QUERYLANGUAGE subfunction to
determine whether or not a particular
language is supported.

REC_NOCOLLECTION Returned by GetPenHwData if collection
mode has not been set.

REC_OEM Error values below REC_OEM (-1024) are
specific to the recognizer.

REC_PCM Invalid lPcm member in RC structure. There
is no way for the recognition to end.

REC_PARAMERR Invalid parameter.
REC_RECTBOUND Invalid rectangle.
REC_RECTEXCLUDE Invalid rectangle.
REC_RESULTMODE Unsupported results mode requested.

SYV_ Symbol Values
Each glyph a recognizer can identify has an associated symbol value. It is this value that is returned to
the application by the recognizer.

The high-order and low-order words of a symbol value have the following meanings:

High-order word Low-order word
0 System symbols.
1 ANSI character code.
2 Gestures.
3 Shift character codes (kanji).
4 Shapes.
5 Unicode.
6 Virtual keys.
7-0x7EFF Reserved for future use.
0x7F00-0x7FFF Recognizer-specific symbols.
>=0x8000 Character code for given code page. The

low 15 bits of the high-order word indicate
the code page.

Recognizers for the European market should return symbol values using ANSI and gesture symbol values
(ANSI is the native character set for Windows in the European market). For the Japanese market,
recognizers can use Shift JIS Level 1 and gestures. When writing a recognizer, bear in mind that symbol
values outside these ranges cannot be interpreted by all Windows applications.

System Symbol Values
The following system symbol values are supported for recognizers:

Constant Description
SYV_BEGINOR Begins a list of choices; in the bedit guide,

displayed as an opening brace character ({).
SYV_EMPTY Empty.
SYV_ENDOR Ends a list of choices. In the bedit guide,

displayed as a closing brace character (}).
SYV_NULL Null terminator.
SYV_OR Separator for list of choices; in the bedit

guide, displayed as a vertical bar (|).
SYV_SOFTNEWLINE Translated to a space by

SymbolToCharacter.
SYV_SPACENULL Used in a symbol graph to indicate an

alternative to a space.
SYV_UNKNOWN Unrecognized glyph.

Gesture Symbol Values
All system recognizers are expected to recognize a special set of glyphs used as commands. In the
following table, the "Windows Equivalent" column shows the mouse and keyboard equivalents in
Windows.

Constant Value Description

Windows
equivalent

. . . 00-0x00FF Command gesture given. The
low byte specifies which ANSI
character was modified by the
command gesture.

Nonstandard
(usually
CTRL+key).

SYV_BACKSPACE 0x00020008 Deletes character under gesture
and sets insertion point.

BACKSPACE.

SYV_CLEAR 0x0002FFD5 Clears the selection. DEL.
SYV_CLEARCHAR 0x0002FFD2 Clears the selection. DEL.
SYV_CLEARWORD 0x0002FFDD Deletes word or object under

gesture.
Double-click, DEL.

SYV_COPY 0x0002FFDA Copies selection to Clipboard. CTRL+INS.

SYV_CORRECT 0x0002FFDF Corrects selection or word
under gesture.

None.

SYV_CONTEXT 0x0002FFD7 Displays a context menu Right mouse click.
SYV_CUT 0x0002FFDB Cuts selection and places it on

Clipboard.
SHIFT+DEL.

SYV_EXTENDSELECT0x0002FFD8 For linear selection (text),
selects all text between current
insertion point and point of
extend-selection gesture. For
nonlinear selection (objects),
adds object under gesture to
selection.

SHIFT+mouse click.

SYV_INSERT 0x0002FFD6 Opens the lens to allow text to
be inserted.

None

SYV_KKCONVERT 0x0002FFD4 Starts Kana-to-Kanji converter.
(Japanese version only.)

N/A

SYV_PASTE 0x0002FFDC Pastes selection at point
indicated by hot spot of paste
gesture.

Click (place
insertion point)
followed by
SHIFT+INS.

SYV_RETURN 0x0002000D Enters carriage-return key. Click, RETURN.
SYV_SPACE 0x00020020 Adds space character. Click, SPACEBAR.
SYV_TAB 0x00020009 Enters tab. Click, TAB.
SYV_UNDO 0x0002FFD9 Undoes previous action. ALT+BACKSPACE.
SYV_USER 0x0002FFDE Any circle gesture. See the following

section.

Circle Gesture Symbol Values
A circle gesture consists of a circled letter, either uppercase or lowercase. The Pen API version 2.0 does
not explicitly support circle gestures. They are defined only for application or recognizer use.

The following table lists the SYV_ values for the circle gestures. Intervening values correspond to the
letters between "a" and "z".

Constant Value Description
SYV_APPGESTUREMA
SK

0x00020000 Mask value for circle
gestures.

SYV_CIRCLELOA 0x000224D0 Lowercase "a" circle
gesture.

SYV_CIRCLELOZ 0x000224E9 Lowercase "z" circle
gesture.

SYV_CIRCLEUPA 0x000224B6 Uppercase "A" circle
gesture.

SYV_CIRCLEUPZ 0x000224CF Uppercase "Z" circle
gesture.

Selection Symbol Values
The following table lists the SYV_values for selection symbol gestures.

Constant Value Description
SYV_SELECTFIRST 0x0002FFC2 Minimum value for

section SYVs.
SYV_LASSO 0x0002FFC1 Lasso selection

(equivalent to double-
click).

SYV_SELECTLEFT 0x0002FFC2 Select text to the left (not
supported by the
Microsoft Handwriting
Recognizer).

SYV_SELECTRIGHT 0x0002FFC3 Select text to the right
(not supported by the
Microsoft Handwriting
Recognizer).

SYV_SELECTLAST 0X0002FFCF Maximum value for
selection SYVs.

Shape Symbol Values
These values should be used by shape recognizers.

Constant Value Description
SYV_SHAPELINE 0x00040001 Shape recognized as a line.
SYV_SHAPEELLIPSE 0x00040002 Shape recognized as an ellipse.
SYV_SHAPERECT 0x00040003 Shape recognized as a

rectangle.
SYV_SHAPEMIN 0x00040001 Minimum value for recognized

shape SYVs.
SYV_SHAPEMAX 0x00040003 Maximum value for recognized

shape SYVs.

Appendix      Differences Between
Versions 1.0 and 2.0 of the Pen
Application Programming
Interface

Version 2.0 of the Pen Application Programming Interface (API) provides more services ¾ and more
avenues for innovation ¾ than did version 1.0. A skimming of Chapters 10 and 11, which identify functions
and structures new to version 2.0, indicates the extent of the enhancements added to the API.

However, if you have used version 1.0 of the Pen API, also known as Microsoft Windows for Pen
Computing, you will find more than additional functions and other services in this release. Programming
philosophy has changed as well. Partic-ularly in the area of recognition, the Pen API now allows greater
freedom and responsibility for the handling and interpretation of pen input.

This appendix identifies some of the most important changes and improvements to the Pen API since
version 1.0. It would require a number of pages to itemize all the improvements incorporated into version
2.0, which are described throughout this book. The purpose of this appendix is to help the developer
familiar with version 1.0 to quickly identify several important areas of version 2.0 that reflect significant
change. You will find that version 2.0 of the Pen API opens up new possibilities for collected ink data other
than simply passing it to a recognizer.

Improvements to the bedit Control
The bedit control of version 2.0 of the Pen API has been significantly improved over that of version 1.0.
The improvements aim to make text entry more convenient and more intuitive for the user. The following
list briefly describes the major improvements:

· The current insertion point is now indicated by an action handle instead of the caret of version 1.0.
· The user can select text by dragging the insertion point action handle. Selected text appears in

reverse video.
· The user can move selected text within the control window by dragging it to a new position.
· Single-line bedit windows can automatically scroll horizontally when the user fills either of the last two

visible boxes. The last character remains visible after the scroll to help orient the user. The control
window also provides scroll arrows for horizontal scrolling.

· A single tap near the center of a character displays a list of alternative characters determined by the
recognizer. Double-tapping brings up a menu with a list of alternative words that can replace the
entire word above the tap. The user selects a letter or complete word by tapping the menu selection.

· As do other controls in Microsoft Windows 95, bedit controls now provide a context menu from which
the user can cut or copy a selection, paste, insert, and so forth.

· If the user inserts a carriage return in a line of a multiline bedit, text to the right of the carriage return
automatically wraps to the next line.

· Empty cells are marked with a light-gray dot to help distinguish them from spaces.

The EM_LIMITTEXT message has a slightly different effect on bedit controls in version 2.0 of the Pen
API. In version 1.0, sending EM_LIMITTEXT to a bedit control window set the number of boxes in the
control as specified by the message's wParam parameter. In version 2.0, EM_LIMITTEXT sets the
maximum number of bytes of text the control can hold instead of the number of boxes. For more infor-
mation about EM_LIMITTEXT, see "The bedit Control" in Chapter 3, "The Writing Process."

Recognition
Version 2.0 of the Pen API significantly changes the way an application interacts with a recognizer. It
allows an application to install multiple recognizers and use them selectively, first creating an HRC object
for each recognizer to configure the recognition process. Version 2.0 provides many more recognition
functions than did version 1.0, but places the full burden of recognition on the recognizer. All recognition
functions are provided by the installed recognizer dynamic-link libraries (DLLs) and not by Windows.

The change in philosophy mentioned at the beginning of this chapter is particulary true with regard to
recognition. Recognizers are now more clearly separate from the system and enjoy a corresponding
freedom in their implementation. The Pen API defines the interaction between application and recognizer,
but stops short of man-dating how a recognizer performs its tasks. The recognizer objects described in
Chapter 8, "Writing a Recognizer," are called objects to emphasize that their forms are invisible to the
application. The objects are "black box" entities, which the recognizer developer designs without restraint
from the system.

For a description of the HRC object and other elements of recognition, see Chapter 5, "The Recognition
Process."

The RC Structure
The core of the recognition process in version 1.0 was the RC data structure. The structure still exists in
version 2.0, but it is made obsolete by the HRC object that governs the recognition process. An
application can still use an RC structure when calling the obsolete version 1.0 functions ProcessWriting,
InitRC, Recognize, and RecognizeData.

The following table lists the members of the RC structure. For each member, the second column
describes the corresponding services in version 2.0 of the Pen API. Use this table to update your version
1.0 applications to use the new services. See the reference chapters in Part 2 for descriptions of the
functions, messages, and constants cited in the table.

RC member Equivalent service in Pen API 2.0
hrec Return value from InstallRecognizer.
hwnd PE_SETTARGETS message. (See "Step 2:

PE_SETTARGETS Message" in Chapter 2.)
wEventRef Return value from GetMessageExtraInfo.

(See sample code in "InputWndProc" in
Chapter 7.)

wRcPreferences ConfigHREC with WCR_GETHAND or
WCR_SETHAND.

lRcOptions Various HRC functions described in Chapters 5
and 8.

lpfnYield Not applicable in version 2.0.
lpUser GetPenMiscInfo with PMI_USER. Cannot set

new user in version 2.0.
wCountry GetInternationalHRC or

SetInternationalHRC.
wIntlPreferences ConfigHREC with WCR_GETANSISTATE or

WCR_SETANSISTATE.
lpLanguage GetInternationalHRC or

SetInternationalHRC.
rglpdf Not applicable in version 2.0.
wTryDictionary Not applicable in version 2.0.
clErrorLevel Not applicable in version 2.0.
alc GetAlphabetHRC or SetAlphabetHRC. (See

"Specifying an Alphabet Set" in Chapter 8.)
alcPriority GetAlphabetPriorityHRC or

SetAlphabetPriorityHRC. Also ConfigHREC
with WCR_GETALCPRIORITY or
WCR_SETALCPRIORITY.

rgbfAlc GetAlphabetHRC or S etAlphabetHRC .
wResultMode Not applicable in version 2.0.
wTimeOut GetPenMiscInfo or SetPenMiscInfo with

PMI_TIMEOUT.
lPcm
rectBound
rectExclude

These three members are replaced by
PE_GETPCMINFO message. (See "Step 3:
PE_GETPCMINFO Message" in Chapter 2.)

guide GetGuideHRC or SetGuideHRC.
wRcOrient Not applicable in version 2.0.

wRcDirect ConfigHREC with WCR_GETDIRECTION or
WCR_SETDIRECTION.

nInkWidth
rgbInk

These two members are replaced by
GetPenMiscInfo and SetPenMiscInfo with
PMI_PENTIP.

dwAppParam Determined by recognizer.
dwDictParam Not applicable in version 2.0.
dwRecognizer Determined by recognizer.

The RCRESULT Structure
The RCRESULT structure provides the means for a version 1.0 recognizer to communicate results to the
application. When the recognizer finishes its work, the application receives a WM_RCRESULT message
containing a pointer to an RCRESULT structure. It then reads the recognizer's guesses from the
structure.

In version 2.0, the RCRESULT structure is made obsolete by the HRCRESULT object. Although they
have similar names, do not confuse the two or attempt to draw parallels between them. The HRCRESULT
contains the recognizer's results in a format determined by the recognizer. This format most likely has
nothing to do with RCRESULT. The application simply calls into the recognizer for recognition results.

For complete descriptions of the version 2.0 recognition functions, see Chapters 5 and 8 and the
reference entries in Chapter 10.

Default Recognition
The version 2.0 application collects, displays, and distributes ink to the recognizer while the user is
writing. The Pen API provides convenient and flexible default processing for these tasks in the
DoDefaultPenInput function, which completely supersedes ProcessWriting.

Nearly all pen-based applications should take advantage of the capabilities of DoDefaultPenInput.
Through a system of messages, the function allows an application to monitor and govern the recognition
process, or simply accept the default decisions of DefWindowProc.

For a description of DoDefaultPenInput and the message traffic it generates, read Chapter 2, "Starting
Out with System Defaults." To see DoDefaultPenInput in use, refer to the code for the PENAPP sample
application presented in Chapter 7, "A Sample Pen Application."

Recognition Processing
In version 2.0, applications have much greater control over scheduling the recog-nition process. If it does
not use DoDefaultPenInput, an application continuously feeds pen data to a recognizer through the
AddPenInputHRC function. By calling ProcessHRC, the application can also schedule regular time slots
for the recog-nizer to see the input as the user writes.

This real-time recognition processing contrasts with the recognition procedures of version 1.0, in which
the application relinquished control to the obsolete Recognize function for the duration of the input
session. The version 2.0 recognizer can now "cook" pen input virtually as it arrives from the pen driver,
with the application determining how often and how long the recognizer has control.

Initializing and Closing a Recognizer
The recognition functions InitRecognizer and CloseRecognizer are obsolete in version 2.0 of the Pen
API. In their place, two new subfunctions have been added to ConfigRecognizer. When the pen system
loads a recognizer, it now calls ConfigRecognizer with the subfunction WCR_INITRECOGNIZER. In
response to this call, the recognizer should perform the required initialization tasks formerly conducted by
InitRecognizer.

Similarly, the system also calls ConfigRecognizer when it unloads the recognizer, this time with the
subfunction WCR_CLOSERECOGNIZER. This call informs the recognizer it is being unloaded and it
should conduct any required cleanup operations.

Applications based on version 2.0 do not call ConfigRecognizer. This is because the function has no
argument that refers to a specific recognizer of the several that may be currently installed. Instead,
version 2.0 applications call the new API function ConfigHREC to configure a recognizer or query for its
capabilities. The system determines the intended recognizer and passes the call on to that recog-nizer's
ConfigRecognizer function. Thus, a version 2.0 recognizer exports ConfigRecognizer, which an
application accesses by calling ConfigHREC.

Word Lists and Dictionaries
Word lists are new to version 2.0. An application can select from among any number of word lists to help
a recognizer verify its guesses. Word-list files must have standard text formatting to allow users to create
or modify them with a text editor, but otherwise have no restrictions in size or content.

Dictionaries existed in version 1.0 as DLL files. In version 2.0, a dictionary serves a recognizer invisibly as
a large word list. The application has no access to a dic-tionary except to tell the recognizer whether or
not to use one. Dictionary files can have any format, but are usually compressed in some manner private
to the recog-nizer.

A dictionary is thus a private (and optional) tool of a recognizer. The "system" in the name
EnableSystemDictionaryHRC does not refer to the operating system, but simply emphasizes ownership.
In this case, "system" means "not application."

Gestures
Version 2.0 no longer provides explicit support for user-defined gestures. The burden of recognizing and
handling new gestures instead falls to the recognizer and application. The Gesture Manager
(GESTMAN.EXE) and API function ExecuteGesture do not exist in version 2.0.

The standard set of "circle-letter" gestures remains, however. All version 2.0 edit controls ¾ hedit, bedit,
and iedit ¾ respond normally to the gestures listed in the following table. An application or recognizer is
free to provide support for any other gesture.

This table lists the gestures available in version 2.0 edit controls. Note that the V-circle and check-mark-
circle gestures have identical behavior. The V-circle gesture is provided only to prevent confusion with the
check-mark-circle gesture.

Gesture Name Action
{ewc ï¿½} Lasso-tap Select

{ewc ï¿½} X-circle Cut current selection

{ewc ï¿½} C-circle Copy current selection

{ewc ï¿½} P-circle Paste

{ewc ï¿½} Check-mark-circle Edit/Properties

{ewc ï¿½} V-circle Edit/Properties

{ewc ï¿½} Caret-circle Insert text

{ewc ï¿½} M-circle Display context menu

{ewc ï¿½} D-circle Clear/Delete

{ewc ï¿½} S-circle Space

{ewc ï¿½} N-circle Newline (carriage
return)

{ewc ï¿½} T-circle Tab

{ewc ï¿½} U-circle Undo

Action Handles
In version 2.0, edit controls have small icons called action handles. Action handles provide the user a
more intuitive and discoverable means for carrying out certain editing tasks than do gestures. With action
handles, the user can:

· Select text.
· Cut, copy, and paste.
· Change the insertion point.
· Drag-and-drop a selection.
· Access a menu of options.

On-Screen Keyboard
In version 2.0, the on-screen keyboard is an independent application named SK.EXE, which can be
launched in the same way any application is launched in Windows; for example, by using the WinExec()
function.

The ShowKeyboard function, which invoked the on-screen keyboard in version 1.0, is still supported but
for older applications, but has been modified due to the fact that the on-screen keyboard is a separate
application in version 2.0.

The WM_SKB message, available in version 1.0, is no longer sent to top-level windows when the on-
screen keyboard changes.

Timing Information
The new HINKSET object allows an application to refer to stroke data completely or partially by time,
rather than by coordinates. The HINKSET object is a tem-poral version of HPENDATA. It sees each
stroke as an interval of time instead of a collection of physical points. See "The HINKSET Object" in
Chapter 4 for a description of stroke timing and HINKSET.

Stroke timing allows a new characteristic of ink rendering called animation. Through animation, an
application can control the speed at which pen data is displayed. For more information, see the
description of DrawPenDataEx in Chapter 10, "Pen Application Programming Interface Functions."

Targeting
An application based on version 2.0 of the Pen API can create multiple windows and writing areas on the
screen that simultaneously accept pen input. Targeting allows the application to govern the distribution of
input data to the proper window.

For example, a forms application can establish targeting information for each of several controls on the
screen. Even if the user writes in the controls in arbitrary order, targeting ensures the pen data arrives at
the proper window procedure.

For more information on targeting, see "Step 2: PE_SETTARGETS Message" in Chapter 2, "Starting Out
with System Defaults." Also see the reference sections for TARGET and TARGINFO in Chapter 11, "Pen
Application Programming Interface Structures."

HPENDATA Memory Block
The internal structure of the HPENDATA memory block has changed since ver-sion 1.0. As described in
"Data Within an HPENDATA Object" in Chapter 4, the stroke header no longer incorporates a
STROKEINFO structure. However, to maintain compatibility with version 1.0, the GetPenDataStroke
function provides a copy of a STROKEINFO structure for the requested data points.

Since the HPENDATA format may again change in future versions, applications should avoid attempting
to read the memory block directly and instead rely on the appropriate HPENDATA functions described in
Chapter 4, "The Inking Process."

The PENINFO structure in the block's HPENDATAHEADER has also changed since version 1.0.
PENINFO contains a new member, fuOEM, that indicates the type of original equipment manufacturer
(OEM) data the HPENDATA object contains.

Registry Configuration
In version 1.0, the PENWIN.INI file contained system configuration information such as the name of the
default recognizer and the time-out value for selection. Version 2.0 removes configuration information
from the PENWIN.INI file and instead stores it in the system registry.

For example, the following code fragment sets the fictitious recognizer RECOG1.DLL as the default
system recognizer. The code presumes that RECOG1.DLL:

· Resides in a location where Windows can find it (usually the system subdirectory).
· Is capable of taking on the role of system recognizer.

For more information about recognizers, see Chapter 8, "Writing a Recognizer." For descriptions of the
registry functions RegSetValueEx, RegCreateKey, and RegCloseKey, see the documentation included
in the Win32 Software Develop-ment Kit.

 HKEY hk; // Key handle returned by RegCreateKey
 .
 .
 .
 // Open (or create) the registry for the parent key
 if ((lRes = RegCreateKey(HKEY_LOCAL_MACHINE,
 (LPSTR)REGSTR_PATH_CONTROL,
 &hk)) == ERROR_SUCCESS)
 {
 // If successful, set "RECOG1.DLL" as the system recognizer
 RegSetValueEx(hk, REGSTR_VAL_PEN_RECOG, NULL, REG_SZ,
 (LPBYTE)(LPSTR)"RECOG1.DLL", 0);

 // Close it
 RegCloseKey(hk);
 }

The PENREG.H header file defines values pertaining to the system registry. Note that, generally,
applications should not change the system configuration, relying instead on the user to do so through the
Control Panel.

For information on retrieving and setting other pen system parameters, see the reference entries for
GetPenMiscInfo and SetPenMiscInfo in Chapter 10, "Pen Application Programming Interface
Functions."

Appendix      Using the 32-Bit Pen
Application Programming
Interface

This appendix describes the 32-bit pen services provided by the PENWIN32.DLL and PKPD32.DLL
libraries. With some exceptions, these dynamic-link libraries (DLLs) offer Win32™-based applications the
same pen-based support as the 16-bit libraries PENWIN.DLL and PKPD.DLL without requiring the
intermediate steps of thunk conversions.

The services not supported by the 32-bit Pen Application Programming Interface (API) consist mainly of
outdated functions no longer required in version 2.0. These outdated functions are supported in the 16-bit
Pen API only to maintain backward compatibility with version 1.0. They will not be supported in future
versions.

To enable 32-bit pen services, an application must be created in a 32-bit environ-ment ¾ that is, the
compiler, linker, libraries, and header files must be of 32-bit type. Before including pertinent header files,
the application must define the constant WIN32 as shown here:

#define WIN32
#include <windows.h>
#include <penwin.h>

A 32-bit application links to the pen system libraries in the same way it links to any other Windows library,
with either of the following methods:

· Link to the import library PKPD32.LIB (not recommended for PENWIN32.LIB) , or
· Explicitly load PENWIN32.DLL and PKPD32.DLL with the LoadLibrary function. After loading the

libraries, the application must call GetProcAddress to obtain the address of each Pen API function it
intends to use. Before termin-ating, the application should call FreeLibrary to unload the libraries
from memory.

The first method should normally be used to link functions in PKPD32.LIB. This method can be used for
functions in PENWIN32.LIB if it is known for certain that the application will always be run on systems that
have pen services installed, in which case the application should test for the existence of pen services at
startup and exit if not found.

The second method should be used for PENWIN32.DLL functions when it is anticipated that the
application may be run on systems where pen services are not installed. The reason for not linking
PENWIN32.LIB is to prevent the application from loading PENWIN32.DLL on a system that has not
loaded pen services at startup. This could happen, for example, on a computer that has PENWIN32.DLL
on the path but has not installed pen services. Loading PENWIN32.DLL dynamic-ally does not sufficiently
start pen services and errors are likely to occur.

In a 32-bit application, the call

GetSystemMetrics(SM_PENWINDOWS);

returns the handle of PENWIN32.DLL. This DLL makes available some of the same resources (such as
cursors) provided by the 16-bit PENWIN.DLL library.

32-Bit Functions
The following table lists the functions supported by the 32-bit Pen API. The syntax for each function
remains the same as for 16-bit applications. For the description and syntax of each function, refer to
Chapter 10, "Pen Application Programming Interface Functions."

The table also uses an asterisk (*) to identify the functions PKPD32.DLL exports. These functions are
always available to 32-bit applications running with Windows 95, regardless of whether the
PENWIN32.DLL file is present. For more informa-tion, see "Pen Kernel Functions" in Chapter 9,
"Summary of the Pen Application Programming Interface."

AddInksetInterval*

AddPenDataHRC

AddPenInputHRC

AddPointsPenData*

AddWordsHWL

BoundingRectFromPoints*

CharacterToSymbol

CompressPenData*

ConfigHREC

ConfigRecognizer

CorrectWriting

CorrectWritingEx

CreateCompatibleHRC

CreateHWL

CreateInkset*

CreateInksetHRCRESULT

CreatePenData

CreatePenDataEx*

CreatePenDataHRC

CreatePenDataRegion*

DestroyHRC

DestroyHRCRESULT

DestroyHWL

DestroyInkset*

DestroyPenData*

DoDefaultPenInput

DPtoTP

DrawPenDataEx*

DuplicatePenData*

EnableGestureSetHRC

EnableSystemDictionaryHRC

EndPenInputHRC

ExtractPenDataPoints*

ExtractPenDataStrokes*

GetAlphabetHRC

GetAlphabetPriorityHRC

GetAlternateWordsHRCRESULT

GetBoxMappingHRCRESULT

GetBoxResultsHRC

GetGuideHRC

GetHotspotsHRCRESULT

GetHRECFromHRC

GetInksetInterval*

GetInksetIntervalCount*

GetInternationalHRC

GetMaxResultsHRC

GetPenAppFlags

GetPenAsyncState

GetPenDataAttributes*

GetPenDataInfo*

GetPenInput

GetPenMiscInfo

GetPenResource

GetPointsFromPenData*

GetResultsHRC

GetStrokeAttributes*

GetStrokeTableAttributes*

GetSymbolCountHRCRESULT

GetSymbolsHRCRESULT

GetVersionPenWin

GetWordlistCoercionHRC

GetWordlistHRC

HitTestPenData*

InsertPenData*

InsertPenDataPoints*

InsertPenDataStroke*

InstallRecognizer

IsPenEvent

MetricScalePenData*

OffsetPenData*

PeekPenInput

PenDataFromBuffer*

PenDataToBuffer*

ProcessHRC

ReadHWL

RedisplayPenData*

RemovePenDataStrokes*

ResizePenData*

SetAlphabetHRC

SetAlphabetPriorityHRC

SetBoxAlphabetHRC

SetGuideHRC

SetInternationalHRC

SetMaxResultsHRC

SetPenAppFlags*

SetPenMiscInfo

SetResultsHookHREC

SetStrokeAttributes*

SetStrokeTableAttributes*

SetWordlistCoercionHRC

SetWordlistHRC

StartInking

StartPenInput

StopInking

StopPenInput

SymbolToCharacter

TargetPoints

TPtoDP

TrainHREC

TrimPenData*

UnhookResultsHookHREC

UninstallRecognizer

WriteHWL

32-Bit Messages
The 32-bit Pen API does not support all the 16-bit messages described in Chap-ter 12, "Pen Application
Programming Interface Messages." This section lists the messages that are supported by the 32-bit Pen
API. Although most 32-bit messages behave the same way as 16-bit messages, certain WM_PENEVENT
submessages behave differently.

WM_PENEVENT Submessages
The following submessages of WM_PENEVENT require different treatment in 32-bit applications:

PE_BEGININPUT

PE_BUFFERWARNING

PE_PENDOWN

PE_PENMOVE

PE_PENUP

PE_TERMINATED

PE_TERMINATING

In 16-bit applications, these submessages store different values in the high-order and low-order words of
their lParam:

· wParam = PE_ submessage number
· LOWORD(lParam) = event reference or termination code
· HIWORD(lParam) = HPCM handle

This scheme is not possible in Win32-based applications because lParam must contain a single 32-bit
handle; therefore, the parameters for the submessages listed above are arranged differently in the 32-bit
Pen API:

· LOWORD(wParam) = PE_ submessage number
· HIWORD(wParam) = event reference or termination code
· lParam = HPCM handle

To extract data from the parameters, use the following macros defined in the PENWIN.H header file.
These macros render the differences in the parameters transparent to an application because they
automatically adjust for 16-bit or 32-bit type of programs:

Macro Description
HpcmFromWpLp Retrieves HPCM handle returned from

StartPenInput. If the application calls
DoDefaultPenInput, that function calls
StartPenInput internally.

EventRefFromWpLp Retrieves event reference value for session
returned from GetMessageExtraInfo. Both
DoDefaultPenInput and StartPenInput take
this value as their second argument.

TerminationFromWpL
p

Retrieves a PCM_ value indicating the
reason for termination from the
PE_TERMINATED and PE_TERMINATING
submessages.

SubPenMsgFromWp
Lp

Retrieves PE_ submessage value.

The macros take both wParam and lParam as arguments and automatically return the desired value for
both 16-bit and 32-bit applications. For example:

HPCM hpcm; // HPCM handle created by StartPenInput
LONG lInfo; // Return value from GetMessageExtraInfo
int iRet; // Error code

.

.

.
case WM_LBUTTONDOWN:

lInfo = GetMessageExtraInfo();
if (IsPenEvent(msg, lInfo))
{

iRet = DoDefaultPenInput(hwnd, LOWORD(lInfo));
}

.

.

.
case WM_PENEVENT:

switch(SubPenMsgFromWpLp(wParam));
{

case PE_PENDOWN:
hpcm = HpcmFromWpLp(wParam, lParam);
//
// Note lInfo and EventRefFromWpLp(wParam, lParam)
// contain the same event reference value.
//

List of 32-Bit Window Messages
The following table lists the WM_ window messages and corresponding sub-messages supported by the
32-bit Pen API (submessages available in the Japanese version are indicated by an asterisk):

WM_ messages Submessages
WM_PENMISCINFO
WM_PENCTL

* HE_CANCELCONVERT
HE_CHAROFFSET
HE_CHARPOSITION
HE_DEFAULTFONT
HE_ENABLEALTLIST
* HE_FIXKKCONVERT
HE_GETBOXLAYOUT
* HE_GETCONVERTRANGE
HE_GETINFLATE
HE_GETINKHANDLE*
HE_GETKKCONVERT
* HE_GETKKSTATUS
HE_GETUNDERLINE
HE_HIDEALTLIST
* HE_KKCONVERT
*
HE_PUTCONVERTCHARHE_SETBO
XLAYOUT
* HE_SETCONVERTRANGE
HE_SETINFLATE
HE_SETINKMODE
HE_SETUNDERLINE
HE_SHOWALTLIST
HE_STOPINKMODE

WM_ messages Submessages
WM_PENMISC PMSC_BEDITCHANGE

PMSC_GETHRC
PMSC_GETINKINGINFO
PMSC_GETPCMINFOPMSC_GETSY
MBOLCOUNT
PMSC_GETSYMBOLS
PMSC_INKSTOP
* PMSC_KKCTLENABLE
PMSC_LOADPW
* PMSC_PENUICHANGE
PMSC_SETHRC
PMSC_SETINKINGINFO
PMSC_SETPCMINFO
PMSC_SETSYMBOLS
* PMSC_SUBINPCHANGE

WM_CTLINIT CTLINIT_BEDIT
CTLINIT_HEDIT
CTLINIT_IEDIT

WM_PENEVENT PE_BEGINDATA
PE_BEGININPUT
PE_BUFFERWARNING
PE_ENDDATA
PE_ENDINPUT

PE_GETINKINGINFO
PE_GETPCMINFO
PE_MOREDATA
PE_PENDOWN
PE_PENMOVE
PE_PENUP
PE_RESULT
PE_SETTARGETS
PE_TERMINATED
PE_TERMINATING

List of 32-Bit iedit Control Messages
The following table lists the IE_ messages available for iedit controls in 32-bit applications:

IE_CANUNDO

IE_DOCOMMAND

IE_EMPTYUNDOBUFFER

IE_GETAPPDATA

IE_GETBKGND

IE_GETCOMMAND

IE_GETCOUNT

IE_GETDRAWOPTS

IE_GETERASERTIP

IE_GETFORMAT

IE_GETGESTURE

IE_GETGRIDORIGIN

IE_GETGRIDPEN

IE_GETGRIDSIZE

IE_GETINK

IE_GETINKINPUT

IE_GETINKRECT

IE_GETMENU

IE_GETMODE

IE_GETMODIFY

IE_GETNOTIFY

IE_GETPAINTDC

IE_GETPDEVENT

IE_GETPENTIP

IE_GETRECOG

IE_GETSECURITY

IE_GETSEL

IE_GETSELCOUNT

IE_GETSELITEMS

IE_GETSTYLE

IE_SETAPPDATA

IE_SETBKGND

IE_SETDRAWOPTS

IE_SETERASERTIP

IE_SETFORMAT

IE_SETGRIDORIGIN

IE_SETGRIDPEN

IE_SETGRIDSIZE

IE_SETINK

IE_SETINKINPUT

IE_SETMODE

IE_SETMODIFY

IE_SETNOTIFY

IE_SETPENTIP

IE_SETRECOG

IE_SETSECURITY

IE_SETSEL

IE_UNDO

Appendix      Modifying the
SYSTEM.INI File

This appendix describes the settings used in the SYSTEM.INI. The SYSTEM.INI file contains all of the
editable information used by the Pen Application Program-ming Interface (API). All other system
information concerning the Pen API version 2.0 is maintained in the Windows 95 system registry and will
not require modifica-tion except by using the Control Panel Pen icon after Pen Services for Windows 95 is
installed.

It is also unlikely that you will manually edit the pen entries in SYSTEM.INI in the Windows 95
environment. A setup information file (PENWIN.INF) provided by Microsoft contains the script that
Windows 95 Setup uses to install Pen Services for Windows 95 as an optional system component. This
script adds the entries shown in the table below to the SYSTEM.INI file. The one SYSTEM.INI entry that
you may want to edit manually after Pen Services is installed is the level of non-critical errors reported.
For this, you will have to manually edit the PenWinErrors entry in the [boot] section of SYSTEM.INI, using
one of the values shown in the table below.

In versions of Windows previous to Windows 95, pen services were removed from a system by manually
editing the SYSTEM.INI file and deleting the entries shown in the table below. This should not be done
with Windows 95. Use the Control Panel Add/Remove Programs icon to remove Pen Services for
Windows 95. This will automatically delete all the Pen Services entries from SYSTEM.INI.

The following table lists the pen-related entries for SYSTEM.INI

SYSTEM.INI Entry Made at Installation
Time

Description

[boot] Section name.
drivers=pen penwindows Defines installable drivers.
PenWinErrors=1 Determines the level of non-

critical errors displayed.
0 = show no errors or
warnings.
1 = show errors only.
2 = show errors and
warnings.

[drivers] Section name.
pen=penc.drv Sets the pen driver.
penwindows=penwin.dll Pen API library.

Appendix      Accessing the Pen
Device Driver

There are no specific functions in the Pen Application Programming Interface (API) for pen driver use.
Instead, the pen driver functionality is implemented with install-able driver messages.

The pen driver is a 16-bit installable driver in the Microsoft Windows 95 operating system. All
communication with an installable driver is through driver messages. A 16-bit application can send a
message to the pen driver with the Windows API SendDriverMessage function.

Because a call to SendDriverMessage must originate from a 16-bit virtual machine, 32-bit applications
cannot use SendDriverMessage to send messages directly to the pen driver. To communicate with the
pen driver, a 32-bit application must provide its own 16-bit dynamic-link library (DLL) to "thunk" calls to
SendDriverMessage.

The installable portion of the pen driver may not exist in future versions of Win-dows. For this reason, an
application should not query for device information directly from the driver unless necessary. Instead, an
application should get hardware information about an HPENDATA object by calling GetPenDataInfo or
GetPenDataAttributes. These functions can apprise an application of various hardware characteristics
(such as sampling rate) current when collecting the HPENDATA.

Opening the Pen Driver
Before sending a driver a message, an application must first obtain a handle to the driver with the
Windows OpenDriver function. The following code demonstrates this:

HDRVRhDrvPen;
.
.
.

hDrvPen = OpenDriver("pen", NULL, NULL);
if(hDrvPen == NULL)
{

// The pen driver does not exist.
// Either display an error message and exit,
// or continue to function as a pen-unaware application.

}

As an example of how to send the driver messages, the following code uses the pen driver message
DRV_SetPenSamplingRate to set the sampling rate to 200 points per second. A later segment of code
then queries the driver to get relevant pen infor-mation.

WORD wOldRate;

wOldRate = SendDriverMessage(hDrvPen, // Driver handle
 DRV_SetPenSamplingRate, // Message
 200, // New rate in Hz
 NULL); // Not applicable

.

.

.
// Get information about the pen driver
PENINFO pi;
BOOL PenHardwareExists;

fPenHardwareExists = SendDriverMessage(hDrvPen,
 DRV_GetPenInfo,
 (DWORD)(LPPENINFO)&pi,
 NULL);

When finished, an application must close the handle to the installable driver with the CloseDriver
function, as shown here:

CloseDriver(hDrvPen, NULL, NULL);

Pen Driver Return Values
All the values that can be returned by the Pen Driver in response to a message are listed in the table
below. These return value constants are defined in PENDRV.H.

Return Value Description
DRV_SUCCESS The message request was

completed successfully.
DRV_FAILURE The message request was

attempted, but was not completed
successfully.

DRV_BADPARAM1 The message request was not
attempted because the first
parameter in the message was
invalid.

DRV_BADPARAM2 The message request was not
attempted because the second
parameter in the message was
invalid.

DRV_BADSTRUCT The message request was not
attempted because a message
parameter that must point to a
structure was not pointing to a valid
structure of the required type. For
example, a message parameter
that should point to a PENINFO
structure does not point to a
writeable block of memory large
enough to contain a PENINFO
structure.

Pen Driver Messages
The following table describes the pen driver messages an application can use, the parameters that must
be provided with each message, and the message return values.

Pen driver
message

Meaning Parameters Return value

DRV_Configure Requests the
driver to display
a configuration
dialog box.

lParam1
LOWORD is the
handle to a
window that will
own the dialog
box;
lParam2 is 0.

Returns
DRV_SUCCESS
or, if the window
handle is invalid,
returns
DRV_FAILURE.

DRV_GetCalibrat
ion

Instructs the
driver to fill a
CALBSTRUCT
structure with
the current
calibration
settings,
including size
and off-set
values.

lParam1 is a far
pointer to a
CALBSTRUCT
structure to be
filled;
lParam2 is 0.

Returns
DRV_SUCCESS
or
DRV_FAILURE
if the installed
tablet does not
support re
calibration.
DRV_BADPARA
M1 is returned if
lParam1 is
invalid.

DRV_GetName Reports the
name of the pen
hardware.

lParam1
LOWORD is the
length of the
name buffer;
lParam2 is a
LPSTR pointer
to the name
buffer.

If successful,
returns the
number of
characters
copied into the
name buffer,
which is the
number of
characters in the
driver name plus
1 (the string null
termina-tion
character is
copied into the
buffer).
Otherwise,
returns
DRV_BADPARA
M1 because
provided buffer
length is
insufficient or
DRV_BADPARA
M2 because the
provided
memory block is
not a writeable
block of the

specified size.
DRV_GetPenInfo Fills in the

PENINFO
structure pointed
to by the
message's
lParam1
parameter with
the current pen
parameters. If
lParam1 is set to
NULL, the driver
checks for the
presence of a
pen tablet only.

lParam1 is a far
pointer to a
PENINFO
structure to be
filled;
lParam2 is 0.

Returns
DRV_SUCCESS
or
DRV_FAILURE
if no pen device
is currently
connected.
DRV_BADPARA
M1 is returned if
the provided
block of memory
is not writeable
or not large
enough to
contain a
PENINFO
structure.

DRV_GetPenSa
mplingRate

Returns the
current sampling
rate.

lParam1 is 0;
lParam2 is 0.

LOWORD
contains the
current sampling
rate.

DRV_GetVersion Reports the Pen
API version
number the
driver supports
and the pen
packet size.

lParam1 is 0;
lParam2 is 0.

HIWORD
contains the pen
packet size in
bytes. Within the
LOWORD,
HIBYTE
contains the
minor version
number,
LOBYTE is the
major version
number.

DRV_PenPlayBa
ck

Sends an array
of recorded pen
packets to the
driver, which the
driver then
sends back to
the system as
though receiving
the packets in
real time from
the device.

lParam1 is a far
pointer to an
array of pen
packets to be
played through
the system;
lParam2
LOWORD is the
number of pen
packets to play
back, HIWORD
is 0.

If successful,
returns 1; if
failure, returns a
value less than
1.

DRV_PenPlaySt
art

Informs the pen
driver of the
format of the pen
packet data it
will receive after
it receives the
next
DRV_PenPlayBa
ck message. The

lParam1 is a far
pointer to a
DWORD that is
updated when
the driver is
done playing
back pen
packets;
lParam2 is either

Returns
DRV_SUCCESS
or
DRV_FAILURE
if the pen
system is
already in
playback mode.

driver does not
begin sending
pen packets into
the system until
it receives the
DRV_PenPlayBa
ck message.

0 or 1 and
specifies the
format of the
pen packets
passed to the
driver (0 means
version 1.0
packets and 1
means version
2.0 packets).

DRV_PenPlaySt
op

Forces the driver
out of playback
mode.

lParam1 is 0;
lParam2 is 0.

Always returns
DRV_SUCCESS
(the pen driver
was in play-back
mode and the
playback mode
was successfully
stopped or the
pen driver was
already out of
playback mode).

DRV_Query Returns whether
or not the
version 2.0 pen
driver supports
the specified
message.

lParam1
LOWORD
specifies the
message
queried about;
lParam2 is 0.

Returns
DRV_SUCCESS
if the message is
supported or
DRV_FAILURE
if it is not.

DRV_QueryConfi
gure

Returns whether
or not the driver
can provide a
configuration
dialog box.

lParam1 is 0;
lParam2 is 0.

Returns
DRV_SUCCESS
if the driver
provides a
configuration
dialog box or
DRV_FAILURE
if it does not.

DRV_SetCalibrati
on

Sets the tablet
calibration.

lParam1 is a far
pointer to a
CALBSTRUCT
structure that
describes the
new calibration
parameters the
pen driver must
use;
lParam2 is 0.

Returns
DRV_SUCCESS
or
DRV_FAILURE
if the tablet does
not support
calibration.
DRV_BADPARA
M1 is returned if
lparam1 is not a
pointer to a
CALBSTRUCT
structure.

DRV_SetPenSa
mplingDist

Sets the
minimum pen
sampling
distance.
Successive
points less than
the given

lParam1
HIWORD is 0;
lParam1
LOWORD is a
new sampling
distance;

If successful,
HIWORD
contains 0;
LOWORD
contains the
previous
sampling

distance do not
generate new
points. The
distance is
defined in raw
tablet
coordinates as
the maximum of
the change in x
and y. The
default distance
is 0, which
means that all
pen events
generate new
events.
A pen driver
does not have to
simulate non
zero sampling
distances. An
application must
use the
DRV_GetPenInf
o driver
message to
determine the
actual sampling
distance set.
Pressing or
releasing a pen
barrel button
gen-erates a
new event, even
if the pen does
not move.

lParam2 is 0. distance.
Otherwise,
returns
DRV_FAILURE.

DRV_SetPenSa
mplingRate

Sets the pen
sampling rate in
samples per
second.

lParam1
HIWORD is 0;
lParam1
LOWORD is a
new sampling
rate;
lParam2 is 0.

If successful,
HIWORD
contains 0;
LOWORD
contains the
previous
sampling rate.
Otherwise,
returns
DRV_FAILURE.

The calibration driver messages use the CALBSTRUCT structure defined as follows:

typedef struct
{

int wOffsetX;
int wOffsetY;
int wDistinctWidth;
int wDistinctHeight;

} CALBSTRUCT, FAR * LPCALPSTRUCT;

The wOffsetX and wOffsetY members are the amount in tablet coordinates that need to be added to the
x- and y-coordinate values returned by the hardware for proper calibration. The wDistinctWidth and
wDistinctHeight members have the same meaning as in the PENINFO structure.

A

action handle
A small icon provided in edit controls that facilitates an editing tasks such as dragging or insertion.

B

baseline
An imaginary horizontal line on which handwritten text rests. Analogous to the lines of lined notebook
paper.

C

comb
A form of writing guide, such as those used in many common forms and questionnaires, consisting
of a horizontal line with spaced tick marks. The guide gets its name from the resemblance of the tick
marks to the teeth of a comb. The user writes in a comb guide with individual characters separated
by the tick marks.

confidence level
A value assigned by a recognizer to indicate its degree of certainty in the results of a recognition. For
example, in recognizing the word "clear," a recognizer assigns a confidence level to each of the five
letters and can also assign a confidence level to the entire word. Word lists and dictionaries can
influence confidence levels. See also recognizer.

D

dictionary
A list of words or phrases private to a recognizer. A recognizer can use its dictionaries to verify
recognition guesses, as directed through the EnableSystemDictionary

G

gesture
A predefined pen motion that signifies some desired action, such as a "lasso" to select or an X to
delete. See also lasso.

H

hook
A callback function provided by an application that receives certain data before the normal recipient
of the data. The hook function can thus examine or modify the data before passing it on.

hot spots
Critical points on symbols, particularly gestures, identified by a recognizer during recognition. See
also gesture, recognizer, symbol.

I

ink
(1) A trail of colored pixels left on the screen that marks the path of the pen's motion. (2) Input data
generated by the moving pen; pen data.

inkset
An object that maps data points to time intervals. The points recorded in an inkset object may
describe one or more strokes. See also stroke.

irreversible compression
A data-compression technique that produces a high degree of compression, but at the cost of lost
information. After uncompression, the pen data can be redisplayed but recognition accuracy may be
reduced. See also reversible compression.

L

lasso
A gesture formed by circling a section of text or other displayed data. See also gesture.

lens
A standard Windows pen interface dialog box that offers an on-screen keyboard or letter guides and
is used for entering and editing text.

lossless compression
See reversible compression.

lossy compression
See irreversible compression.

O

OEM data
Data about pen pressure, angle, height, and other aspects of pen input that is collected in addition to
data points. The specific OEM data collected depends on the hardware and the data it reports.

on-screen keyboard
(1) An image of a keyboard displayed on the screen. (2) The applet (Screen Keyboard or SKB) that
displays the image. The user "types" on the on-screen keyboard by pressing the pen on the desired
keys, as though typing on a real keyboard.

P

packet
A collection of pen data sent by the pen driver at a frequency determined by the sampling rate. Each
packet contains the current coordinates of the pen, the time, and, optionally, other information.
Collectively, the packets represent a digitized history of the pen's movement. See also sampling rate.

pen collection mode
The system state in which pen movement generates data, instead of being interpreted as mouse
movement. Also known as input session.

pen-down stroke
Data points collected while the pen is in contact with the tablet. Together, these points comprise a
stroke. See also pen state, pen tip transition, pen-up points, proximity stroke.

pen packet
See packet.

pen state
The condition of the pen relative to the tablet surface ¾ either up or down, depending on whether the
pen is in contact with the tablet.

pen tip transition
The act of touching a pen to or lifting the pen from the tablet surface. The former begins a pen-down
stroke, while the latter ends a pen-down stroke and begins a pen-up stroke. See also stroke,
proximity stroke.

pen-up stroke
Data points received when the pen is not in actual contact with the tablet, but near enough for the
tablet to sense movement. Together, these points comprise a proximity stroke. See also pen-down
points, pen state, pen tip transition, proximity stroke.

proximity stroke
A stroke formed while the pen is near but not on the tablet surface. Also called "pen-up stroke." Not
all pen tablets can detect proximity strokes. See also pen tip transition, pen-up points, stroke.

R

real time
In the context of pen-based computing, real time means "while the pen is moving."

recognition function
One of the 43 Pen Application Programming Interface (API) functions exported by a recognizer
dynamic-link library. See also recognizer.

recognizer
A dynamic-link library of functions that collectively serve to recognize ink data as characters,
numerals, words, foreign script, or other symbols.

reentrancy
The condition in which a function is interrupted during execution and restarted from its beginning in
response to another caller.

reversible compression
A data-compression technique that loses no information, so data can be redisplayed and recognized
with no loss of accuracy after uncompression. See also irreversible compression.

S

sampling rate
The frequency at which the pen driver sends packets to the pen system. A typical sampling rate is
100 - 120 packets per second, but does not necessarily equal the rate of hardware interrupts
generated by the pen tablet. See also packets.

Screen Keyboard
See on-screen keyboard.

SKB
See on-screen keyboard.

stroke
The pen data generated between two pen tip transitions. For example, when the pen touches the
tablet (pen down), all data generated as the pen moves comprises a pen-down stroke until the pen
leaves the tablet. If the tablet can sense proximity strokes, the pen movement above the tablet
surface forms a separate pen-up stroke until the pen either leaves the tablet's range of sensitivity or
touches down again. Thus, in noncursive printing, the letter "c" is formed as a single stroke while the
letter "E" requires several pen-down strokes separated by pen-up strokes. See also pen-down
points, pen tip transitions, pen-up points, proximity strokes.

symbol
An element interpreted by a recognizer from raw pen data. For example, the default system
recognizer sees an individual letter or numeral as a symbol. A word is thus a string of symbols. A
recognizer for cursive writing, however, may see an entire word as a single symbol without
distinguishing each letter of the word. See also recognizer.

symbol correspondence
A map of the ink data that forms a recognized symbol. See also symbol element.

symbol element
An SYE structure containing a symbol value, its confidence level, and an identification of the ink data
that forms the symbol. See also confidence level, symbol value.

symbol value
A numerical value that represents a recognized character or set of characters. A symbol value is
internal to the recognizer and by itself has little meaning to the application. To translate a symbol
value to a character such as a letter or numeral, an application must call the SymbolToCharacter
function.

T

target
A window or writing area that receives pen input data.

trainer
An application that trains a recognizer. The trainer application may operate in the background, which
is known as "passive training," or be activated by the user, which is "active training." See also
recognizer, training.

training
The process used to update a recognizer's database so that it better reflects the individual style and
writing characteristics of a particular user, thus increasing the recognizer's accuracy in handwriting
interpretation. See also recognizer, trainer.

Programmer's Guide to Pen
Services for Microsoft®
Windows® 95 (Addendum)

This addendum to the Programmer's Guide to Pen Services for Microsoft Windows 95 contains updated
information intended for international application development, particularly for Japanese pen-based
applications. The changes listed in this addendum are divided by chapter and appendix.

Introduction
· The last sentence of first paragraph should read as follows:

Following the reference, a number of appendixes provide information about the differences between
versions 1.x and 2.0 of the Pen API, the 32-bit pen services, and more.

Organization
· In the table describing the parts of the book, note that the title of Appendix A should refer to Versions

1.x and 2.0 rather than 1.0 and 2.0.

Books and Articles for Further Reading
· The description of Ray Duncan's article, "Power Programming," in PC Magazine, should refer to

version 1.x of the Pen API, not version 1.0.

Chapter 1 Overview of the Pen Application Programming Interface
· Note the version change in the final introductory paragraph:

The architecture of version 2.0 of the Pen API remains similar to version 1.x, but its style and design
differ considerably. Even if you have worked with version 1.x, you should read this chapter to
understand the shift in programming philosophy in version 2.0.

Architecture of the Pen API
· Note the version change in this paragraph from the "Windows" section.

In version 1.x of Pen Windows, the application was required to call RegisterPenApp in order to tell
the system to convert all edit controls to handwriting edit (hedit) controls. With Pen API version 2.0,
however, this is not necessary; all edit controls in applications are automatically converted. If the
application is version-stamped as a Windows 95-based application, the conversion is automatic;
otherwise, applications version-stamped as Windows 3.1-based applications require the call to
RegisterPenApp that was required for Pen Windows, version 1.x.

· Information about handwriting recognizers has been added to this paragraph in the "Recognizer"
section.
Although many recognizers may be available to an application, only one serves as the system default
recognizer. This is the recognizer that Windows automatically installs and calls by default. To use
other recognizers, an application must first specifically install them. (For information about how to
install multiple recognizers, see Chapter 5, "The Recognition Process.") The Microsoft Handwriting
Recognizer (GRECO.DLL in US, RODAN.DLL in Japan) is provided as the default system recognizer
on most OEM tablet installations of Microsoft pen services. GRECO.DLL recognizes all European
letters, numerals, and punctuation, with emphasis on English, French, and German. RODAN.DLL
recognizes Kanji, Kana, and other Japanese characters. An application can set up a different system
recognizer by identifying the new file in the Windows registry. Appendix A explains how to set up a
new default recognizer.

· The following section was added at the end of the "Recognizer" section.

IME (Input Method Editor, for converting Kana to Kanji)
In Japanese Pen Services 1.1 (for Windows 3.1) special extensions to the system IME were required
to convert handwritten characters to Kanji. For Windows 95, the IME has become standardized as a
system DLL, with a new, extended API set. No special API set is required for use with handwriting
input.
Although the IME shipped with Windows 3.1 for Pen may be used in Windows 95, it cannot be used
to convert handwritten characters into Kanji. Some of the original 1.1 Pen APIs used for Kana to Kanji
conversion have been updated, and remain backwardly compatible, and some new APIs have been
added. For more information, see Chapter 10, "Pen Application Programming Interface Functions."

Chapter 2 Starting Out with System Defaults

Pen-Unaware Applications
· This paragraph was added as the last in the section.

In Japan, these applets are combined into a single application called the Data Input Window
(PENSKJ.EXE). In addition, an applet to set system recognition priorities (Tool Palette, PENTPJ.EXE)
and an applet to train Japanese characters (Trainer, PENTRJ.EXE) are also provided.

Chapter 3 The Writing Process
· The second introductory paragraph has been changed, as follows:

The writing process includes the various ways a user can write input to a pen-based application.
These involve not only writing words and scribbling figures with a pen, but also gesturing with
predefined pen movements and tapping an on-screen keyboard or Data Input Window.

· The following Note has been added as the final item in "The hedit Control" section.

Note The Microsoft Japanese Handwriting Recognizer (RODAN.DLL) does not support "free input" into
hedit controls. An application should either use a BEDIT control or provide access to the Data Input
Window¾with a Lens button, for example.

· Figure 3.1 has been renumbered as 3.1a, and a new piece of art (Figure 3.1b) has been added.
{ewc msdncd, EWGraphic, bsd23556 0 /a "SDK.BMP"}

Japanese characters typically use large, separated boxes, often with a small cross at the center of
each as a writing aid:

{ewc msdncd, EWGraphic, bsd23556 1 /a "SDK.BMP"}

· The version number in the first sentence of the third paragraph in the "bedit Control
Messages"section has been changed.
The EM_LIMITTEXT message deserves special mention because it has changed slightly from version
1.x of the Pen API.

· In the same section, a final bulleted item has been added to the ending list.
· If limiting the text splits a double-byte character, the whole character is discarded.

The On-screen Keyboard
· The following paragraph has been added after the second paragraph.

In Japan, the ShowKeyboard API has been replaced by the CorrectWritingEx function, which
displays the Data Input Window.

Chapter 4 The Inking Process
· Note the version change in this paragraph from the "Stroke Headers" section of "Data Within an

HPENDATA Object."
As Figure 4.1 shows, a stroke header prefaces each collection of pen coordinates that make up a
single stroke. Note that the structure of the stroke header in version 2.0 of the Pen API is different
from the stroke header of version 1.x, since the stroke header now consists of a variable-length array
instead of the STROKEINFO structure used in version 1.x. The current STROKEINFO structure is,
nevertheless, compatible with version 1.x stroke headers.

· Note the version change in the following Note from the "Creating an HPENDATA Object" section.

Note It is highly recommended that you use only the functions from version 2.0 of the Pen API.
Although API from version 1.x are included for backward compatibility, it is not guaranteed that they
will be supported in future versions of the Pen API.

Chapter 5 The Recognition Process

Using the HRC Functions
· In the section "Creating the HRC," a bulleted item has been added following the third paragraph. Also,

the paragraph after the bulleted list contains a change.
Either or both arguments can be NULL. Giving NULL as the first argument creates a new HRC with
default settings. The next section, "Configuring the HRC," describes the default parameters, which
include the following settings:
· Recognition ends after a brief period of inactivity or when the user taps outside the target window.
· The target window does not use guides.
· The recognizer returns only its best guess without alternative guesses.
· In Japan, recognition priority defaults to the settings specified by the Tool Palette applet, if it is

active; otherwise the recognizer default setting is used.

Giving NULL as the second argument binds the HRC to the system default recognizer. Microsoft
Windows sets the supplied file GRECO.DLL as the system default recognizer (RODAN.DLL in
Japan), specified in the Microsoft Windows 95 system registry. Refer to Appendix A for an explanation
of how to change the default to another recognizer.

· The following information has been added immediately before the "Gesture" section.
ALC_KANJISYSMINIMU
M

Minimum set of characters needed for
Japanese system recognizer. Same as
ALC_SYSMINIMUM | ALC_HIRAGANA
| ALC_KATAKANA | ALC_JIS1.
(Japanese version only.)

If an application does not specify alphabet configuration either through an existing HRC model or by
calling the function SetBoxAlphabetHRC or SetAlphabetHRC, Windows assumes
ALC_SYSMINIMUM (or ALC_KANJISYSMINIMUM) as the default alphabet configuration. For a
complete list of ALC_ values, including Japanese-specific ones, see Chapter 13, "Pen Application
Programming Interface Constants."

Alphabet Priority
The SetAlphabetPriorityHRC function provides a hint to the recognizer about which alphabet the
user intends to use while inputting handwritten characters. Some written symbols have more than one
interpretation, depending on alphabet (this is especially true in Japanese, which uses multiple
alphabets). A crosslike character like the English plus sign (+) could also be interpreted as a lower
case "t", katakana "na" or "me", or Kanji "juu" (the number 10), for example. Moreover, there are both
SBCS and DBCS versions of English and katakana characters, corresponding to half-and full-pitch
widths, so it's useful for a user or application to be able to pre-specify widths and character set
preferences to minimize recognition errors.
Applications may use the SetAlphabetPriorityHRC API to set width and alphabet priority for HRC
scope, or the SetPenAppFlags API to set width (DBCS or SBCS) preference for application scope.
The Tool Palette application may be used to set system-wide priorities. Any priority set into an HRC
supersedes application priority, which supersedes system priority as set (and if set) by the Tool
Palette; in the event of not Tool Palette, the recognizer's default priority is used. The
ALC_GLOBALPRIORITY bit will be set in all default HRCs, unless it is explicitly cleared with
SetAlphabetPriorityHRC. To specify no priority, as opposed to default priority, an application should
clear the ALC_GLOBALPRIORITY bit and set ALC_NOPRIORITY.

· The following constant has been added to the "Gesture" section.
GST_KKCONVERT Kana-Kanji convert. (Japanese version

only)

· In the "Unboxed Recognition" section, the following paragraphs have been changed.
An HRCRESULT object does not contain a normal text (ASCII for English) string representation of a
guess. This is not possible since a guess might be made up of a gesture, shape, or other entity that
has no text equivalent. Instead, an HRCRESULT contains a string of symbol values, which are 32-bit
numbers type-defined as SYV.
Symbol values can represent geometric shapes, gestures, letters of the alphabet, Japanese kanji
characters, musical notes, electronic symbols, or any other symbols defined by the recognizer. The
Pen API provides the function SymbolToCharacter to convert the null-terminated symbol string in
HRCRESULT to a normal text string.

· In the section "Getting Results from the RCRESULT Structure," note the version change in the first
sentence of this paragraph.
The RCRESULT structure applies only when an application calls either of the version 1.x recognition
functions, Recognize or RecognizeData. In this case, the system sends a WM_RCRESULT
message to the application. The wParam of this message contains a REC_ submessage that
indicates why recognition ended. The lParam of WM_RCRESULT points to an RCRESULT structure,
which contains all the results of the recognition.

· Note the change to "text string" (formerly "ASCII string") in this paragraph.
The RCRESULT structure identifies the recognizer's "best guess," which is the guess in which the
recognizer places the most confidence. With this information, an application can conveniently retrieve
a text string of the best guess by calling SymbolToCharacter:

Chapter 6 Design Considerations

Recognition: Use and Misuse
· In the section "bedit Is Better Than hedit," the following third paragraph has been added.

In Japan the bedit is almost always used for input, either directly, or via the Data Input Window.
· In the section "Provide Easy Access to the On-screen Keyboard," the following sentence has been

added after the first paragraph.
In Japan, this information is served by the Data Input Window.

Guidelines for Applications
· The "Word Processor" section has been changed.

Although the pen does not reasonably serve to create a word-processor document for English or
European languages, it can serve well for small editing tasks on an existing document, such as cut-
and-paste operations, formatting changes, rewriting small amounts of text, and navigation
(scrolling)....
· In Far Eastern countries such as Japan, Korea, and China, where ideographic characters such as

Kanji are used, a full-featured pen-input word processing application would greatly simplify input of
text.

Chapter 7 A Sample Pen Application

Overview of PENAPP
· In the first bulleted item following the third paragraph, the phrase "and it supports free input" has been

added and the word "ANSI" has been deleted.

Window Procedures
· The following code has been changed in the "InputWndProc" section.
#define MAX_GUESS 5 // Maximum number of guesses
#define MAX_CHAR 20 // Maximum number of characters per guess

// Global Variables ***
HRCRESULT vrghresult[MAX_GUESS]; // Array of results
SYV vsyvSymbol[MAX_GUESS][MAX_CHAR]; // Array of symbol strings
int vcSyv[MAX_GUESS]; // Array of string lengths
.
.
.

LRESULT CALLBACK InputWndProc(
 HWND hwnd, // Window handle
 UINT message, // Message
 WPARAM wParam, // Varies
 LPARAM lParam) // Varies
{
 LONG lRet = 0L; // Initialize return code to FALSE
 HRC hrc; // HRC object
 HDC hdc;
 PAINTSTRUCT ps;
 DWORD dwInfo;
 int i, cGuess;

 switch (message)
 {
 .
 .
 .
case WM_LBUTTONDOWN:
//
// Two possibilities exist: user is using mouse or the pen.
// The latter case indicates the user is starting to write.
//
dwInfo = GetMessageExtraInfo();
if (IsPenEvent(message, dwInfo))
{
 if (DoDefaultPenInput(vhwndInput, (UINT)dwInfo) == PCMR_OK)
 lRet = TRUE;
 else
 lRet = DefWindowProc(hwnd, message, wParam, lParam);
}
break;

case WM_PENEVENT:
 switch (wParam)
 {
 case PE_GETPCMINFO:
 //
 // If using SREC recognizer, ensure session ends
 // on pen-up.

 //
 if (viMenuSel == miSample)
 ((LPPCMINFO) lParam)->dwPcm |= PCM_PENUP;
 lRet = DefWindowProc(hwnd, message, wParam, lParam);
 break;

case PE_BEGINDATA:
 //
 // Action based on current menu selection:
 //
 // 1) If currently using sample recognizer, create an HRC
 // for it and specify it in the TARGET structure pointed
 // to by lParam. This tells DoDefaultPenInput to use
 // the sample recognizer rather than the system default.
 //
 // 2) If displaying mirror image of ink, create an
 // HPENDATA for it and specify it in the TARGET structure
 // pointed to by lParam. This tells DoDefaultPenInput to
 // collect data into the HPENDATA block instead of
 // passing it to a recognizer.
 //
 // 3) If using the default recognizer, pass to DefWindowProc,
 // which sets the maximum number of guesses to 1 and may
 // or may not require any guide information. The Japanese
 // default recognizer (RODAN.DLL) does require a guide
 // for character recognition. The following code shows
 // how to access the HRC that DefWindowProc creates,
 // reset the number of guesses to MAX_GUESS, and set
 // up the client rectangle of the input window as a
 // single guide.
 //
 if (vhpendata)
 {
 DestroyPenData(vhpendata);
 vhpendata = 0;
 }

 switch (viMenuSel)
 {
 case miSample:
 hrc = CreateCompatibleHRC(NULL, vhrec);
 if (hrc)
 {
 ((LPTARGET) lParam)->dwData = hrc;
 lRet = LRET_HRC;
 }
 break;

 case miMirror:
 vhpendata = CreatePenData(NULL, 0,
 PDTS_HIENGLISH, 0);
 if (vhpendata)
 {
 ((LPTARGET) lParam)->dwData = vhpendata;
 lRet = LRET_HPENDATA;

 }
 break;

 case miSystem:
 lRet = DefWindowProc(hwnd, message,
 wParam, lParam);
 //
 // On return, lParam->dwData points to HRC.
 // Use it to reset max number of guesses.
 //
 SetMaxResultsHRC(((LPTARGET) lParam)->dwData,
 MAX_GUESS);
 {
 GUIDE guide;
 RECT rc;

 GetClientRect(vhwndInput, &rc);
 ClientToScreen(vhwndInput, (LPPOINT) &rc.left);
 ClientToScreen(vhwndInput, (LPPOINT) &rc.right);
 guide.xOrigin = rc.left;
 guide.yOrigin = rc.top;
 guide.cxBox = rc.right - rc.left;
 guide.cyBox = rc.bottom - rc.top;
 guide.cxBase = 0;
 guide.cyBase = guide.cyBox;
 guide.cHorzBox = 1;
 guide.cVertBox = 1;
 guide.cyMid = guide.cyBox / 2;
 SetGuideHRC(((LPTARGET) lParam)->dwData, &guide, 0);
 }
 break;
}
 break;

case PE_ENDDATA:
//
// DefWindowProc will destroy vhpendata, so if collecting
// mirror image, don't let DefWindowProc handle message
//
if (viMenuSel != miMirror)
 lRet = DefWindowProc(hwnd, message, wParam, lParam);
 break;

case PE_RESULT:
//
// At end of input, collect recognition results (if any)
// into symbol strings. DoDefaultPenInput generates the
// PE_RESULT submessage only when using a recognizer.
// The lParam contains the HRC for the recognition process.
//
// NOTE:
// Do not destroy HRC, even after getting results!
// DefWindowProc takes care of destroying the object.
//

// Collect pen data for DrawRawData
vhpendata = CreatePenDataHRC((HRC) lParam);

// Initialize array to zero
for (i = 0; i < MAX_GUESS; i++)
 vcSyv[i] = 0;

// Get number of guesses available
cGuess = GetResultsHRC((HRC) lParam,
 GRH_ALL,
 (LPHRCRESULT) vrghresult,
 MAX_GUESS);

// Get guesses (in vsyvSymbol) and their lengths (invcSyv)
if (cGuess != HRCR_ERROR)
 for (i = 0; i < cGuess; i++)
 vcSyv[i] = GetSymbolsHRCRESULT(vrghresult[i],
 0,
 (LPSYV) vsyvSymbol[i],
 MAX_CHAR);

// Destroy the HRCRESULTS
for (i = 0; i < cGuess; i++)
 DestroyHRCRESULT(vrghresult[i]);

 break;
 .
 .
 .
 default:
 lRet = DefWindowProc(hwnd, message, wParam, lParam);

 } // End switch (message)
 return lRet;
}

· In the "DisplayGuesses" section of the "InfoWndProc" section, the following code has changed.
VOID DisplayGuesses(HDC hdc) // DC handle
{
 TEXTMETRIC tm;
 int nX, nY; // Text coords
 .
 .
 .
 for (i = 0; i < MAX_GUESS; i++)
 {
 if (vcSyv[i] > 0)
 {
 SymbolToCharacter((LPSYV) vsyvSymbol[i],
 vcSyv[i],
 (LPSTR) szText,
 (LPINT) &cChar);
 for (nLen = 0; cChar > 0; cChar--)
 nLen += IsDBCSLeadByte(*(szText + nLen)) ? 2 : 1;

 TextOut(hdc, nX, nY, (LPSTR) szText, nLen);
 nY += tm.tmExternalLeading + tm.tmHeight;
 }
 }
}

Chapter 8 Writing a Recognizer

How a Recognizer Works
· Version information has been changed in the first paragraph.

The Pen API specifies the following functions for initializing, modifying, and closing down the
recognizer. Note that, in version 2.0 of the Pen API, the required function ConfigRecognizer handles
all initialization and configuration tasks. The other initialization functions are obsolete in version 2.0
and should only be included in a recognizer if it is expected to work with older applications that work
with a version 1.x recognizer (see the Microsoft Pen Windows, version 1.x documentation for
descriptions of these functions).
Note that the table following the first paragraph should refer to version 1.x rather than 1.0.

· In the "HRCRESULT Section," note that the GetAlternateWordsHRCRESULT function is not
supported.

· In the "Training" section, note the version changes in the following paragraph and in the table it
introduces.
The following table lists the functions that a recognizer with training capabilities can export. Only
TrainHREC is used by version 2.0 Pen API. The other functions are obsolete in version 2.0 and
should be included in a recognizer only if it is expected to work with older applications that work with a
version 1.x recognizer (see the Microsoft Pen Windows, version 1.x documentation for descriptions of
these functions).

· In the "Processing Raw Data" section of the "Interpreting Input" section, note the additional .DLL in
the first sentence of the second paragraph.
The Microsoft Handwriting Recognizer (GRECO.DLL or RODAN.DLL) processes only coordinate
data.

· In the section "Segmentation of Symbols," following Figure 8.1, the final sentence has been changed.
The Pen API places few restrictions on the recognizer. At a minimum, however, a default recognizer
that supports free (unboxed) input must be able to recognize discrete characters because many
applications do not use boxed input.

· In the "Results Messages" section of the "Returning Results" section, note the version change in the
second bulleted item.

· In the section "The RCRESULT Structure" in the "Returning Results" section, the note should refer to
version 1.x, not 1.0. Also in this section, the "Location and Position of the Input" section, the final
sentence in the first bulleted item has been changed.
The Microsoft Handwriting Recognizer (GRECO.DLL or RODAN.DLL) sets nBaseLine to 0.

Writing a Recognizer
· In the "DestroyHRC" section, the code has been changed.
int WINAPI DestroyHRC(HRC hrc)
{
 LPHRCinternal lphrc = (LPHRCinternal) hrc; // Pointer to HRC

 if (GlobalUnlock(lphrc->hglobal) || GlobalFree(lphrc->hglobal))
 return HRCR_ERROR;
 else
 return HRCR_OK;
}

Chapter 9 Summary of the Pen Application Programming Interface

Pen API Functions
· Note the version change in the table of function categories.

Obsolete Obsolete functions of version 1.x maintained by
version 2.0 only for compatibility reasons.

· In the "List of Pen API Functions" section, the descriptions of several functions have been changed.
ShowKeyboard Displays or hides the on-screen

keyboard.
(Not supported in Japan)

GetAlternateWordsHRCRESU
LT

Gets alternative guesses made
by a recognizer.
(Not supported in Japan)

CorrectWriting Displays lens or Correct Text
dialog box to allow user to correct
text. (In Japan, this is wrapper for
CorrectWritingEx)

KKConvert Activates the Kana-to-Kanji
converter. (Japanese version
only.)

StartPenInput Begins collecting into an internal
buffer ink data generated by the
moving pen. See also the
descriptions of StartInking and
DoDefaultPenInput.

Recognize Begins recognition for a version
1.x recognizer.

RecognizeData Delayed recognition for a version
1.x recognizer.

SetRecogHook Installs and removes a
recognition hook in version 1.x.
Superseded by
SetResultsHookHREC.

Pen API Structures
· In the "List of Pen API Structures" section, the descriptions of several structures have been changed.

RC Various information about the
recognition context used by
version 1.x recognition functions.

RCRESULT Results of recognition initiated
through a version 1.x recognition
function.

Pen API Constants
· The following items have been either redescribed or added to the table of constants.

CWX_ Options for CorrectWritingEx.
CWXA_ Options for CorrectWritingEx.
CWXK_ Options for CorrectWritingEx.
CWXKS_ Options for CorrectWritingEx.
CWXR_ Return types for CorrectWritingEx
GPR_ Options for GetPenResource.
REC_ Return codes from a version 1.x recognizer.

Chapter 10 Pen Application Programming Interface Functions
· In the second paragraph, the phrase "for example, 1.0 or 2.0" should read "for example, 1.x or 2.0."
· The CWR_KKCONVERT constant has been removed from the dwFlags parameter of the

CorrectWriting function. Also, in the same function, the final sentence has been changed as follows:
Note that in the Japanese version, CorrectWriting is supported but internally calls
CorrectWritingEx, which opens a Data Input Window.

· The first sentence of the CorrectWritingEx funtion has been changed:
Sends text to the Japanese Data Input Window to allow the user to edit text. (Japanese version only.)
In the description of the lpText parameter of CorrectWritingEx, the phrase "and gets modified by the
user" has been appended to the second sentence.

· In the description of the cbText parameter, the second sentence should read as follows:
If the source of the text is an edit control that is constrained by EM_LIMITTEXT, cbText should be set
to the limiting size plus one.

· In the Example of CompactWritingEx, the second-to-last code block has been changed.
// don't update most-recently used settings for this one-shot:
cwx.wApplyFlags |= CWXA_NOUPDATEMRU;
cwx.ixkb = CWXK_QWERTY;
cwx.rgState[CWXK_QWERTY-CWXK_FIRST] = CWXKS_ROMAHAN;
cwx.dwFlags = CWX_NOTOOLTIPS | CWX_TOPMOST; // no distractions

· In the GetHotspotsHRCRESULT function, the final sentence of the first Comments paragraph has
been changed.
The Microsoft Handwriting Recognizer (GRECO.DLL in US, RODAN.DLL in Japan), supports this
function for gesture symbols only.

· In the GetPenAppFlags function, the three references to the RegisterPenApp function have been
changed to SetPenAppFlags.

· The GetPenResource function has been added.

GetPenResource
The GetPenResource function retrieves a copy of a pen services resource. (Japanese version only.)

HANDLE GetPenResource(WPARAM wParam)

Parameters
wParam

Specifies the pen services resource for which to retrieve a handle. This may be one of the following:
Constant Description
GPR_CURSPEN Standard pen cursor.
GPR_CURSCOPY Copy cursor.
GPR_CURSUNKNOW
N

Unknown cursor.

GPR_CURSERASE Erase cursor.
GPR_BMCRMONO Monochrome Return bitmap.
GPR_BMLFMONO Monochrome LineFeed bitmap.
GPR_BMTABMONO Monochrome Tab bitmap.
GPR_BMDELETE Delete bitmap.
GPR_BMLENSBTN Lens buttonface bitmap.
GPR_BMHSPMONO Hankaku space bitmap (Japanese version

only).
GPR_BMZSPMONO Zenkaku space bitmap (Japanese version

only).

Comments
An application can use this function to get a copy of a cursor or bitmap used by pen services. It is the
application's responsibility to destroy the object by calling either the DestroyCursor or DeleteObject
Windows API.

Return Value
· This function returns a handle to an object, depending on the index specified by wParam if

successful. Otherwise the return value is NULL.

· The following sentence has been added to the Comments section of the SetPenAppFlags function.
If both RPA_DBCSPRIORITY and RPA_SBCSPRIORITY are specified, the RPA_SBCSPRIORITY is
ignored.

· In the TrainHREC function, the following sentence has been appended to the Comments section.
Training gestures depends on the recognizer. The Microsoft Handwriting Recognizer (GRECO.DLL in
US, RODAN.DLL in Japan) does not support training for gestures.

Chapter 11 Pen Application Programming Interface Structures
· Note that throughout this chapter structures marked as version 1.0 should be marked as version 1.x.
· The final sentence of the introductory paragraph has been changed.

The entry heading identifies the Pen API version, such as 1.x or 2.0, that supports the structure.
· In the CWX structure, the description of the CWXA_CONTEXT constant has changed.

Constant Description
CWXA_CONTEXT Use the dwFlags member to specify

context. (topmost, tooltips, period, comma)

· Two CWX_ constant descriptions have been changed.
Constant Description
CWX_EPERIOD Specifies that the English period is to be

used on some keys on the Data Input
Window keypads. The Japanese period is
used by default.

CWX_ECOMMA Specifies that the English comma is to be
used on some keys on the Data Input
Window keypads. The Japanese comma
is used by default.

· The CWXK_ROMAJI constant has been removed from the list of CWXK_ constants.
· The description of the CWXK_KANJI constant should read as follows:

Kanji finder, which provides a method of specifying a Kanji character based on its strokes.
· The paragraph describing the rgState member of the CWX structure has been changed. The

constant descriptions have also changed.
¼and this member is ignored. The zero-based order is: 50-On Keyboard, QWERTY Keyboard,
Numeric Keyboard, Stroke/Radical Finder, Code Finder, and Yomi Finder. On return, this member
contains the updated states. Each element of the array may be CWXKS_DEFAULT, which causes the
existing saved state to be used, or one of the following constant values, depending on the keyboard:

Constant Description Applicable
Keyboards

CWXKS_HAN Set Hankaku (single-
byte) state.

Numeric

CWXKS_ZEN Set Zenkaku (double-
byte) state.

Numeric

CWXKS_ROMAHAN Set Hankaku Romaji
state.

QWERTY

CWXKS_ROMAZEN Set Zenkaku Romaji . QWERTY
CWXKS_HIRAZEN Set Hiragana state. 50-On, QWERTY
CWXKS_KATAHAN Set Hankaku Katakana

state.
50-On, QWERTY

CWXKS_KATAZEN Set Zenkaku Katakana
state.

50-On, QWERTY

· The SKBINFO structure is not available in the Japanese version of the Pen API.

Chapter 12 Pen Application Programming Interface Messages
HE_KKCONVERT
Starts Kana-to-Kanji conversion. Submessage of WM_PENCTL. (Japanese version only.)

Parameters
wParam

HE_KKCONVERT.
lParam

Must be one of the following values:
Value Meaning
HEKK_DEFAULT The first time the conversion is specified,

the selected or marked character string is
replaced with the conversion result. The
behavior for successive calls depends on
the IME. For example, a candidate list may
appear.

HEKK_CONVERT The selected or marked character string is
replaced with the conversion result; the
conversion candidate list doesn't appear
regardless of how many times conversion
has been specified.

HEKK_CANDIDATE The selected or marked character string is
replaced with the conversion result; this
causes the conversion candidate list to
appear.

HEKK_DBCSCHAR The SBCS characters (0x20 - 0x7E, 0xA1 -
0xDF) are replaced by their DBCS
equivalents.

HEKK_SBCSCHAR The DBCS characters in the selected or
marked character string that have
equivalent SBCS representations are
replaced by their equivalent SBCS
characters.

HEKK_HIRAGANA The katakana characters (DBCS or SBCS)
in the selected or marked character string
are replaced with their hiragana
equivalents.

HEKK_KATAKANA The hiragana characters in the selected or
marked character string are replaced with
their DBCS katakana representation.

Return Value
Returns TRUE if there are no errors; otherwise, returns FALSE:

Comments
In this message, "marked character string" indicates the string that is marked for conversion. Text marked
for conversion is indicated by a different selection color than that used for normal text selection in a
standard text edit control. Available for bedits only.

HE_PUTCONVERTCHAR
Sends a character to the control and marks it for conversion. Submessage of WM_PENCTL. (Japanese
version only.)

Parameters
wParam

HE_PUTCONVERTCHAR.
lParam

The low-order word contains the character code, which can be an SBCS or DBCS character.

Return Value
Returns TRUE if there are no errors; otherwise, returns FALSE.

Comments
Posting this message is similar to posting a WM_CHAR message to a bedit control, with the exceptions
that the posted character also acquires the attribute of being a character marked for conversion in the
Input Method Editor, and DBCS characters may be specified in the LOWORD of lParam. This
submessage is available for bedits only.

WM_PENMISC
· The PMSC_KKCTLENABLE, PMSC_PENUICHANGE, and PMSC_SUBINPCHANGE subfunctions

have been removed.

Chapter 13 Pen Application Programming Interface Constants

ALC_Alphabet Codes
Constant Description
ALC_KANJISYSMINIMUM Minimum set of characters needed for

Japanese system recognizer. Same as
ALC_SYSMINIMUM | ALC_HIRAGANA |
ALC_KATAKANA | ALC_JIS1. (Japanese
version only.)

RCD_ Writing Direction
· Note the Note: The RCD_ constants are provided only for compatibility with version 1.x the Pen API

and will not be supported in future versions.

RCP_ User Preferences
· Note the Note: RCP_ constants are provided only for compatibility with version 1.x of the Pen API

and will not be supported in future versions.

RCRT_ Results Type
· The RCRT_ALREADYPROCESSED constant description has been changed.

Constant Description
RCRT_DEFAULT Normal return type.

Appendix A Differences Between Versions 1.x and 2.0 of the Pen
Application Programming Interface
Note the title change, from version 1.0 to 1.x. This change is reflected throughout this chapter and will not
be mentioned here unless text has otherwise changed.

Improvements to the bedit Control
· The final paragraph of this section has been changed.

Because Japanese and other Far Eastern languages may use double-byte characters, an application
must specify double the number of bytes for EM_LIMITTEXT than applications expecting only single-
byte characters (or halve the number of boxes). Note that even without explicitly limiting text with
EM_LIMITTEXT, input into single-line, nonscrollable BEDIT controls is limited to the number of boxes
available. For example, a 3-box postal code BEDIT allows only three characters, be they SBCS or
DBCS. For more information about EM_LIMITTEXT, see "The bedit Control" in Chapter 3, "The
Writing Process."

· In the section "The RC Structure," the table following the second paragraph has been changed.
RC member Equivalent service in Pen API 2.0
lpUser GetPenMiscInfo with PMI_USER. Cannot

set new user in version 2.0.

Gestures
· The gesture table has been changed.

Gesture Name Action
{ewc ï¿½} T-circle Tab

{ewc ï¿½} or {ewc
msdncd,
EWGraphic,
bsd23556 4 /a
"SDK.BMP"}

 or

K-circle or symbol-
circle (drawin Right to
Left)

Kana to Kanji
conversion

Action Handles
· A sentence has been added at the end of this section.

In the Japanese version, action handles can be disabled with the Control Panel.

On-Screen Keyboard
· A sentence has been added at the end of this section.

In the Japanese version, ShowKeyboard is not available. Rather, CorrectWritingEx allows access
to the Data Input Window.

Appendix B Using the 32-Bit Pen Application Programming Interface

32-Bit Functions
· The KKConvert function has been added to the list of functions supported by the 32-bit Pen API.

